
o++o on 42 Pages
(28.09.2021)

Klaus Benecke

Table of Contents
 1 Vision.. 1
 2 Our design criteria for an end-user language...2
 3 Calculations with o++o: More than a pocket calculator..2
 4 Schemes and TTDs of structured tables...11
 5 Simple recursive assignments.. 14
 6 Queries.. 16
 7 Queries to multiple tables without joins (igib)..22
 8 A BOM explosion with o++o number...25
 9 Generation of images... 27
 10 Diagrams... 30
 11 "Hello otto" - gimmick.. 32
 12 o++o for School... 33
 13 Closing words, a quote from Adam Ries...41
 14 Literature... 41

 1 Vision
There are the 4 basic single value operations addition, subtraction, multiplication and division with

almost standardized notations +, -, × (*) resp. : (÷). Later many operations were added like

sin, cos, log, … . Because of ongoing digitalization we need also powerful mass data operations

with standards. The set of set-theoretic operations as intersection (∩), union (∪), set difference (\ or -)

have been extended to include the Cartesian product (×), join (|×|), projection (π) and selection

operations (σ). These operations are hidden in SQL – the standard database language for Relational). These operations are hidden in SQL – the standard database language for Relational
databases. Most of today's data are stored with Relational Systems like ORACLE, MYSQL, HANA,
DB2, MariaDB, … . The Relational Model was invented by the British mathematician E. F. Codd.
Because the Relational model was not powerful enough to fulfill the requirements of the industrial
applications the computer scientists extended the model by multi-sets, simple aggregate functions like
sum, avg, … , by groupby, having, sorting operations … . Despite these extensions, you cannot process
structured tables with SQL. But there are very simple structured tables as

SUBJECT,MARKl l
maths 1 2 2 3 1
physics 2 1 4 1 3 4

, which can be understood by children. Here, we have for each subject a list (l) of marks. The whole
table consists of a list (the last l) of (SUBJECT,MARKl)-pairs. SQL and even EXCEL is not able to

handle such schemes like (SUBJECT,MARKl l). Therefore we believe that SQL will never achieve

its original goal - to become an end-user language. So we need a new standard for databases and
collections of documents. Our proposal: o++o

1

Our vision is that o++o will become the standard for querying Relational databases, big-data systems
and even systems, which manage huge amounts of documents.

Facebook and Co. are working on preparing messages in such a way that they primarily address
emotions, as if the social situation wasn't already sufficiently heated. Our approach is different. We are
working on providing the end user with tools to strengthen his rational judgment with the help of the
computer. To do this, he must be able to access extensive, trustworthy, publicly available information in
the form of large tables and documents similar to Wikipedia. The individual should be able to evaluate
these independently. Only in this way can he form his own judgment.

Even if this language is as simple as possible, it requires a certain amount of learning in contrast to the
“Facebook approach”.

Such a Programming language in combination with trustworthy data could be a big step towards a
further democratization of society. A lot of “fake news” could easily be paralyzed by anyone, if he can
write computer programs by himself to generate appropriate facts or statistical computations.

 2 Our design criteria for an end-user language
1. A mathematical foundation is required.
2. Methodological, didactic and pragmatic questions have to be considered firstly and then

efficiency problems.
3. The end-user programs should be short and easy to read, as well as the most important key

words.
4. No loops (for, while). Loops often lead to programs that are difficult to read and difficult to

modify. General recursion requires a relatively high level of abstraction and therefore a high
learning curve; this should also be avoided. As a result, the programs should simply be written
and processed from top to bottom and from left to right. That requires powerful operations.

5. The end-user language should be universally applicable. It must be usable not only for relations
(flat simple tables), but also for structured tables and structured documents. It should not only be
suitable for queries to a wide variety of systems, but also for a variety of calculations.

6. In order to be used in school lessons, it should support the various mathematical sub-areas as
well as offer benefits for the other subjects.

7. The end-user language should be so powerful that it can replace other systems and languages
such as spreadsheets, XQuery, XPath and SQL.

8. From the end-user perspective, there should be a uniform system with uniform syntax (notation)
for processing mass data, just as the operations of single value data processing (+ - * : sqrt
sin…) are standardized.

 3 Calculations with o++o: More than a pocket
calculator

o++o is designed to be user-friendly; that means so simple and memorable syntax as possible as well as
short programs. His arithmetic operations follow the logic of mental arithmetic and therefore run like a
simple pocket calculator.

The following programs should be tried out at ottops.eu, as you can hardly learn programming without
testing it yourself.

2

o++o, more precisely ottoPS (otto programming language), is not just a much more advanced pocket
calculator. o++o also allows queries to structured TABles and docuMENTS (TABMENTs). o++o is
therefore also suitable for enabling database queries and later becoming the basis of certain search
engines. o++o is an end-user programming language that can easily manage repeating groups. It allows
queries to tables and documents to be formulated particularly easily.

Program 3.1: Calculate the fourth root of 16.

16 sqrt sqrt

Result:

2.

(Note: Results in the GUI are shown after clicking the button labeled “tab”.)

You can see that unary operations are written after the input value (postfix). This saves us 4 parentheses

compared to the well-known notation sqrt (sqrt (16)).

Program 3.2: Calculate the sine of "pi halve".

pi:2 sin

Result:

1.

Program 3.3: Calculate the sine of 30 degrees.

30:180*pi sin

Result:

0.5

Program 3.4: How many 10-digit binary numbers are there?

2 hoch 10

Result:

1024

“hoch” is German and shorter than “to the power of”.

Program 3.5: Calculate the edge length of a cube of volume 2 (the third root of 2).

2 hoch 1/3

Result:

1.25992104989

or

2 hoch (1:3)

Result:

3

1.25992104989

1/3 is a rational number. That means, "/" is not an operation in contrast to ":". Since we always calculate
from left to right, 2 hoch 1: 3 = (2 hoch 1): 3 = 0.666666666667.

Program 3.6: Compute an average.

1 3 2 1 3 4 ++:

Result:

2.33333333333

In order to save writing effort, you can write without any visible separators and brackets a list of values

(here the numbers in the line). The average operation (++:) is now applied to this list. In addition to the

average, you can also form a sum (++), the product (**), count (++1), the maximum (max), the sine

(sin), ln, … . Since sin only requires one input value, using the sine operation instead of the ++

operation results in a list of output values. You could then apply ++: to this list again and then just get a

number. The above notation may take some getting used to, but it is more compact than the old notation

avg ([1; 3; 2; 1; 3; 4]).

Especially when several operations are used one after the other, you save a lot of brackets and thus

reduce the causes of errors. We consider ++: and the other operations mentioned here as unary, just like

sin or sqrt, and write them after the input value, since we regard the given numbers as one list (one

tabment).

Program 3.7: Calculate the value of the term “sqrt(abs(sin(7.1))+abs(cos(8.1)))”.

7.1 sin abs
+ 8.1 cos abs
sqrt

Result:

0.986160835697

or in single line with a pair of parentheses

7.1 sin abs + (8.1 cos abs) sqrt

Result:

0.986160835697

In the three-line solution, as is usual in programming languages, the calculation is from top to bottom.
You cannot calculate the value of the second line if you do not omit the "+" sign. Therefore the values of
the first and second lines are simply added. From the overall result of the second line, the square root is
then taken by the third line.

Program 3.8: Find the product of multiple numbers.

3 5 2 2 **

Result:

4

60

In o++o, several operations are written according to the very old “forest principle”. There is a word for

the tree and “tree tree” means forest. The above ** therefore replaces 3 multiplication signs. Because of

this operation, we can omit the factorial function.

9! can be expressed in o++o by 1 ..9 **.

Program 3.9: Multiply each decimal number in a list by another number.

2.40 2.70 7.90 * 1.19

Result:

2.856 3.213 9.401

Each number in the input list is multiplied by 1.19. If the given numbers are net prices, the result

represents the associated gross prices (in Germany). If, on the other hand, the given numbers are

amounts in one currency and if 1.19 is the exchange rate, then the result represents the values in the

other currency. If the numbers in the list are lengths of rectangles, so there are 3 areas of rectangles. We
see that decimal numbers are not represented with a comma but with a decimal point.

Program 3.10: Find the sum of many positive and many negative numbers without using many minus
signs and brackets.

4 5 3 2 1 8 9 ++
- 7 6 5 4 3 2 1 ++

Result:

4

Program 3.11: Calculate the circumferences of several circles, given the radii. The results are to be
rounded to 2 digits after the point.

4 5 6 2 3.7 9.77
*pi*2
rnd 2

Result:

25.13 31.42 37.7 12.57 23.25 61.39

The program can also be written in one line.

Program 3.12: Calculate the perimeters and areas of several circles, given the radii.

Rl:= 4 5 6 2 3.7 9.77
PERIMETER:=R*pi*2
AREA:=R*R*pi
rnd 1

Result:

R, PERIMETER, AREA l
4. 25.1 50.3

5

5. 31.4 78.5
6. 37.7 113.1
2. 12.6 12.6
3.7 23.2 43.
9.8 61.4 299.9

By Rl:= each element of the given list is assigned the name (called “tag” in o++o) R. With an

assignment (“:=”) the given table is extended by a new column. At the top, the columns PERIMETER

and AREA are added one after the other, resulting in a table of type R,PERIMETER,AREA l. l

stands for list. Unfortunately, this can easily be confused with the one.

Program 3.13: Calculate the areas and perimeters of several rectangles.

<TAB!
A, B l
1.23 5.67
7.65 4.32
9.87 6.54
!TAB>
PERIMETER:=A+B*2
AREA:=A*B

Result:

A, B, PERIMETER, AREA l
1.23 5.67 13.8 6.9741
7.65 4.32 23.94 33.048
9.87 6.54 32.82 64.5498

The TAB brackets (“<TAB!”, “!TAB>”) are only required in the program part of the system. In a file

the type is recognized by the system by the suffix “.tab”. In the TAB representation, the values must

be aligned with the left-hand side of the associated column names.

Program 3.14: Find the total price of a simple calculation.

<TAB!
ARTICLE, PRICE l
Bier 0.61
Brause 0.23
Schnitzel 2.40
!TAB>
++

Result:

3.24

Here simply the sum over the numbers in the given table (a list of pairs) is formed. The article values are

words and therefore have no influence on the result. Now, we replace ++ with * 1.1, this creates a table

with 2 columns and three rows (records, tuples), each number including a tip of 10%:

Program 3.15: Multiplication of a table with a number.

6

<TAB!
ARTICLE, PRICE l
Bier 0.61
Brause 0.23
Schnitzel 2.40
!TAB>
* 1.10

Result:

ARITICLE, PRICE l
Bier 0.671
Brause 0.253
Schnitzel 2.64

Then you can add again

++

to get the grand total (3.564).

Program 3.16: Find the total price of a more complicated calculation given by a simple table.

<TAB!
ARITICLE, PRICE, COUNT l
Bier 0.61 7
Brause 0.23 3
Schnitzel 2.40 4
!TAB>
POSPRICE:=PRICE*COUNT
++ POSPRICE

Result:

14.56

As a result of the assignment, the given table is expanded by a new column with the column name
POSPRICE, whereby each of the three PRICE value is multiplied by the associated COUNT value. In

order to determine the total number of the pub visit, the ++ operation must be given a second input

value. Otherwise the total of all nine numbers in the above table would be formed. Both lines of the
program can also be replaced by

++ PRICE*COUNT

. The first input value of an operation that is at the beginning of a program line is always the result of the
previous program line.

The sign “:=” of the assignment must be distinguished from the equal sign =. The equal sign as well as

<, >, <=, in etc. is required to formulate conditions. Conditions are used for selection (filtering of lines
of structured tables).

For example, you add a condition

avec ARTICLE = Bier

7

or just

avec Bier

the final result is only the total price for the seven beers. If you want to calculate the price for the other
articles instead, you use

sans ARTICLE = Bier

or simply

sans Bier

in its place.

Column names (metadata) must always be capitalized. The key words (gib, sans, avec, ...) must

always be written in lower case. If you always write a word of the primary data with upper and lower
case letters, the program becomes easier to read.

Program 3.17: Compute the total price of a longer pub visit.

<TABH!
ARITICLE, PRICE,COUNTl l
Bier 0.61 7 6 5
 3
Brause 0.23 3 4
Schnitzel 2.40 4 3 2
!TABH>
POSPRICE:=PRICE*COUNT
++ POSPRICE

Result:

36.02

Here we are dealing with a structured table that contains several orders for each position. Since we have

chosen the horizontal version TABH of TAB, we do not have to write the COUNT-entries below each

other, so that the pub visit table can be presented in a compact manner. If, on the other hand, one does

not consider the final result but only the result of the application of the assignment, the COUNT and

POSPRICE values must be below each other, since the resulting structured table would otherwise

become too confusing:

ARITICLE, PRICE,(COUNT, POSPRICE l)l
Bier 0.61 7 4.27
 6 3.66
 5 3.05
 3 1.83
Brause 0.23 3 0.69
 4 0.92
Schnitzel 2.4 4 9.6
 3 7.2
 2 4.8

8

If you want to add the COUNT values first and then multiply,

POSPREIS:= COUNTl ++ *PRICE

, this results in a more compact intermediate table:

ARITICLE, PRICE, POSPREIS,COUNTl m
Bier 0.61 12.81 7 6 5 3
Brause 0.23 1.61 3 4
Schnitzel 2.4 21.6 4 3 2

Both program lines can also be replaced by ++ PRICE*COUNT.

You can save the viewed tables under a name, for example with the ending .tab or .tabh, and then

call them up again. This allows tables or documents to be used in several programs.

Program 3.16 could then look like this:

pub_visit.tabh
++ PRICE*COUNT

This example can be applied to many applications. When bowling you could also set up a table
bowling.tabh with a repeating group: NAME, THROWl m.

The names and counts of the individual litters can be entered as you wish.

m abbreviates set and l list. For each bowler you can then determine the total amount by means of an

assignment and then sort the data in descending order. If you only want certain columns in the result and

you want to sort by these, you need a gib-clause.

Program 3.18: Determine the overall result of bowling for each person and sort the data accordingly.

bowling.tabh
TOTAL:=THROWl ++
gib TOTAL,NAME m-

It can also be a little shorter:

bowling.tabh
gib TOTAL,NAME m-
TOTAL:=THROW! ++

The reference to the aggregation (here ++) results from the header of the desired table. TOTAL is one

aggregation per NAME. Sets (m, m-) are always sorted according to the column names specified first.

Program 3.19: Find a weighted average for 3 students and the overall average.

<TABH!
NAME, EXAl, MARKl l
Ernst 1 2 1 2 3 1 3 1 1
Clara 1 1 3
Sophia 1 3 1
!TABH>
TOT:=EXAl ++: *0.6 +(MARKl ++: *0.4)

9

TOTAL:=TOTl ++:
rnd 2

Result:

TOTAL,(NAME, TOT, EXAl, MARKl l)
1.66 Ernst 1.59 1 2 1 2 3 1 3 1 1

 Clara 1.8 1 1 3
 Sophia 1.6 1 3 1

Program 3.20: A bottle with cork costs one mark and ten. The bottle is a mark more expensive than
the cork. How much does the cork cost?

BOTTLEl:= 0 .. 110
CORK:= BOTTLE - 100
avec CORK+BOTTLE = 110

Result:

BOTTLE, CORK l
105 5

The first assignment gives each of the numbers from 0 to 110 the tag BOTTLE. This is best seen if you
look at the ment-representation:

<TABM>
 <BOTTLE> 0 </BOTTLE>
 <BOTTLE> 1 </BOTTLE>
 <BOTTLE> 2 </BOTTLE>
 <BOTTLE> 3 </BOTTLE>
 . . .
 <BOTTLE> 108 </BOTTLE>
 <BOTTLE> 109 </BOTTLE>
 <BOTTLE> 110 </BOTTLE>
</TABM>

If you had incorrectly written the assignment BOTTLE:= 0 ..110, the tag BOTTLE would only

occur once, assigning the tag to the whole list of values rather than each value:

<BOTTLE>
0
1
2
3
. . .
108
109
110
</BOTTLE>

second solution:

10

BOTTLEl:= 0 ..110
CORK1 := BOTTLE – 100
CORK2 := 110 – BOTTLE
avec CORK1=CORK2

Result:

BOTTLE, CORK1, CORK2 l
105 5 5

This solution is advantageous from a methodological point of view, as the first 3 program lines can be
illustrated by clicking on the image button. You can see that there are 2 straight lines, the intersection of
which is determined by the condition.

Program 3.21: Write 20 times „I love you“.

"Je vous aime." mal 20

Result:

TEXTl

"Je vous aime." "Je vous aime." "Je vous aime." "Je vous aime."
"Je vous aime." "Je vous aime." "Je vous aime." "Je vous aime."
"Je vous aime." "Je vous aime." "Je vous aime." "Je vous aime."
"Je vous aime." "Je vous aime." "Je vous aime." "Je vous aime."
"Je vous aime." "Je vous aime." "Je vous aime." "Je vous aime."

“mal” is a binary operation that, like all other binary operations, is written infix (between the input

values).

 4 Schemes and TTDs of structured tables
We are adding this chapter at this point to clarify the difference between simple (flat) and structured
tables.

First of all, a table is divided into n columns A1, A2,…, An. The column names in the o++o program

must not contain any lowercase letters. If all A1, A2,..., An have an elementary type, then an A1,

A2,..., An table contains exactly one simple line, e. g .:

NAME,LOC, SALARY
Paul Oehna 1000

If we add a collection symbol, e.g. l for list, the table can contain 0, 1 or more rows. Example:

NAME, LOC, SALARY l
Paul Oehna 1000
Sophia Dallgow 900
Claudia Dallgow 2000
Clara Oehna 900

11

 tab-representation of a flat table (list of triples)

NAME LOC SALARY

Paul Oehna 1000

Sophia Dallgow 900

Claudia Dallgow 2000

Clara Oehna 900

(graphik-representation of the flat table)

If we replace the l with the set symbol m, the table is displayed in a sorted manner.

NAME, LOC, SALARY m
Clara Oehna 900
Claudia Dallgow 2000
Paul Oehna 1000
Sophia Dallgow 900

If you want to sort this table by location, you just swap the columns in a corresponding statement

gib LOC,NAME,SALARY m

LOC, NAME, SALARY m
Dallgow Claudia 2000
Dallgow Sophia 900
Oehna Clara 900
Oehna Paul 1000

You can now see that the table contains some redundancy. This can be eliminated with a structured table
(gib LOC,(NAME, SALARY m)m):

LOC, (NAME, SALARY m) m
Dallgow Claudia 2000
 Sophia 900
Oehna Clara 900
 Paul 1000

 (structured_table.tab)

This table contains two struples (structured tuples = structured records = structured elements), i.e., e.g.

that the number (++1) of the (now structured) elements of the table is no longer 4 but 2. The number of

people remains of course 4. Nevertheless, we can process this table with o++o in the same way as the

preceding ones. You can also create two or three tables from the output table with a gib-statement:

LOCm, NAMEm, SALARYm
Dallgow Clara 900
Oehna Claudia 1000
 Paul 2000
 Sophia

(three_collections.tab)

12

This overall table contains all the elementary data of the output table, but the other information has been

lost. Dallgow and Clara are in the same line in this tab-representation, but Clara does not live in

Dallgow. You always have to look at the scheme. Strictly speaking, we are dealing with a triple of

three sets: {Dallgow Oehna}, {Clara Claudia Paul Sophia}, {900 1000 2000}

Here the comma stands for “pair formation” and the space separates the elements of the sets.

The schema of structured_table.tab is:

LOC,(NAME,SALARY m)m

In many cases this metadata is sufficient. However, this does not yet show, for example, how one can

calculate with which column values. The TTD (Tabment Type Definition) makes this clear:

TABMENT! (LOC,(NAME,SALARY m) m)
SALARY! ZAHL
NAME LOC! WORT

TABMENT is a made-up word from TABle and docuMENT. If the table is saved under the name above,

the TTD is extended accordingly:

TABMENT! STRUCTURED_TABLE
STRUCTURED_TABE! (LOC,(NAME,SALARY m) m)
SALARY! ZAHL
NAME LOC! WORT

The spelling of the collection symbols probably takes some getting used to. A collection symbol is

written like the other unary operations according to the scheme. As I said, the LOC scheme stands for

one location. This means that an o++o table with this scheme (with this header) can only contain one

location. In contrast, relations or EXCEL-tables with the header LOC contain any number of locations.

In o++o you have three options to represent these "relations":

LOC LOCl LOCb LOCm
Dallgow Dallgow Dallgow Dallgow
Oehna Oehna Dallgow Oehna
Dallgow Dallgow Oehna
Oehna Oehna Oehna
EXCEL o++o-list o++o-bag o++o-set

Bag refers to a multi-set. We recognize that bags are sorted and sets are sorted and, in addition, sets do

not contain any duplicates. The schemes LOCm and LOC m express the same thing. The difference is

only visible when there are several columns:

LOC,NAME m

contains several (LOC, NAME)-pairs, whereas

LOC,NAMEm

can only contain one location but with multiple names. This means that a collection symbol, which
follows a column name without spaces, saves a pair of brackets.

LOC,NAMEm

13

is equivalent to

LOC,(NAME m)

. Tables of the type

LOC,NAMEm m

can then have many different tables of the type

LOC,NAMEm

. In the context of the gib statement contains the result of

gib LOC,NAMEm m

each location only once. So that can

LOC, NAMEm m
Dallgow Claudia
Dallgow Sophia
Oehna Ernst
 Clara

not be the result of this give instruction, but:

LOC, NAMEm m
Dallgow Claudia
 Sophia
Oehna Ernst
 Clara

The advantage of this structure only really comes into play if you save additional data for each location,

such as number of inhabitants, mayor etc. The inner m says that there are a set of names for every

location. This means again that no name can occur more than once within a location. Nevertheless, a

second Ernst could of course also be live in Dallgow.

In o++o, every tabment has a scheme. This even applies to individual values to which the user has not

assigned a scheme. Gerwisch, for example, has the elementary scheme WORT (=word) and 39175 the

elementary scheme ZAHL (= big int). This makes Gerwisch a tabment. Gerwisch is not an object of

the relational data model in contrast to "{Gerwisch}". That seems subtle, but it has a major impact on
the architecture of the data model.

 5 Simple recursive assignments
In addition to the simple calculations (:=) with an associated formula, which add a new column to a

table, there are also so-called recursive assignments. Two formulas are given here. The first formula is
intended for the first element of the new column of the corresponding collection and the second for the
remaining elements. The formula for the remaining elements can refer to the predecessor of the column.

That is in the following program AMOUNT pred.

Program 5.1: What happens to 100 euros after 10 years with 9% growth (interest).

14

YEARl:= 0 .. 10
AMOUNT:= first 100. next AMOUNT pred*1.09 at YEAR
rnd 2

Result:

YEAR, AMOUNT l
 0 100.
 1 109.
 2 118.81
 3 129.5
 4 141.16
 5 153.86
 6 167.71
 7 182.8
 8 199.26
 9 217.19
10 236.74

Program 5.2: Convert a binary number (here 10111 = 23) into a decimal number.

BITl:= 1 0 1 1 1
DECI:= first BIT next DECI pred*2+BIT at BIT

Result:

BIT, DECI l
1 1
0 2
1 5
1 11
1 23

If you don't want the whole development but only the last element of the list, you can add the condition

avec BIT pos- = 1 or simply last. If the last bit is not wanted either, gib DECI should follow.

Program 5.3. Convert a decimal number (here 23) into a binary number.

DIVRESTl := first 23 divrest 2
 next DIVREST pred nth 1 divrest 2
 while DIVREST ++ > 0
gib RESTl-

Result (tabh-format):

1 0 1 1 1

With the above recursive extension, two new columns are introduced under one name, DIV and REST.

divrest here is the integer division with the integer and the remainder (a pair of numbers with tags

DIV and REST).

Program 5.4: Calculate the monthly development of a home construction loan of 110,000 euros at
2% annual interest if 900 euros are paid off monthly.

15

Initial credit 110000 Euro
MONLOAD:=900 # monthly load
PROC:=1.02 hoch 1/12 -1 # 2 % interest per YEAR
CREDIT,INTEREST,REPAYMENT l:=
 first 110000. , 0. , 0.
 next CREDIT pred-(REPAYMENT pred),(CREDIT*PROC),(MONLOAD-INTEREST,CREDIT min)
 while CREDIT > 0 at PROC
YEAR,MON:=CREDIT pos -1 divrest 12+1 leftat CREDIT
PROC::=PROC*100
rnd 2

Result:

MONLOAD, PROC, (YEAR, MON, CREDIT, INTEREST,REPAYMENT l)
900 0.17 1 1 110000. 0. 0.
 1 2 110000. 181.67 718.33
 1 3 109281.67 180.49 719.51
 1 4 108562.16 179.3 720.7
 1 5 107841.46 178.11 721.89
 1 6 107119.57 176.92 723.08
 1 7 106396.49 175.72 724.28
 1 8 105672.21 174.53 725.47
 1 9 104946.74 173.33 726.67
 1 10 104220.06 172.13 727.87
 1 11 103492.19 170.93 729.07
 1 12 102763.12 169.72 730.28
 2 1 102032.84 168.52 731.48
 2 2 101301.35 167.31 732.69
 2 3 100568.66 166.1 733.9
 2 4 99834.76 164.89 735.11
 . . .
 11 12 5930.53 9.79 890.21
 12 1 5040.33 8.32 891.68
 12 2 4148.65 6.85 893.15
 12 3 3255.5 5.38 894.62
 12 4 2360.88 3.9 896.1
 12 5 1464.78 2.42 897.58
 12 6 567.2 0.94 567.2

Somewhat more sophisticated recursive assignments (with o++o numbers) can be found in chapter 8.

 6 Queries
We now assume that every river in rivers.tabh has a LENGTH column. Then you can find all rivers

that are longer than 500 km with the following query:

Program 6.1: Select in a given table.

rivers.tabh
avec LENGHT > 500

16

“avec” is French and means “with”. Similarly, we use “sans” for “without”.

Now the rivers are to be sorted according to their length and output with tributaries:

Program 6.2: Selection with subsequent sorting.

aus rivers.tabh
avec LENGHT>520
gib LENGHT,RIVER,TRIBUTARYm m

Result (tabh-format):

LENGHT, RIVER, TRIBUTARYm m
 544 Main "Fraenkische Saale" Gersprenz Kinzig
 Lohrbach Nidda Rechtenbach Regnitz
 "Roter Main" Tauber "Weisser Main"
 544 Mosel Alf Dhron Elzbach Kyll Lieser Madon Meurthe
 Moselotte Orne Ruwer Saar Salm Sauer Seille
 Vologne
 544 Saar Blies Nied Prims Rossel
 866 Oder Bartsch Birawka Bober Eilang Faule Obra
 Glatzer Neisse Hotzenplotz Ihna Iseritz
 Kaltebach Katzbach Klodnitz Lohe Malapane
 Mietzel Neisse Ohle Olsa Oppa Ostrawitza
 Pleiske Raude Roehrike Stober Summina Thue
 Tiefenburgbach Warthe Weide Weistritz
 Weissfurth Welse Zinna
1165 Elbe Adler Aland Alster Biela Bille Dahle
 Doellnitz Eger Elde Este Gottleuba Havel
 Ilmenau Iser Jahna Jeetze Kamnitz Kirnitzsch
 Lachsbach Lockwitz Loecknitz Model Moldau
 Mulde Mueglitz Ohre Oste Polzen Priessnitz
 Saale "Schwarze Elster" Stepenitz Stoer
 Tanger Weisseritz Wesenitz "Wilde Sau"
 Zidlina
1320 Rhein Aare Ahr Alb Alb bei Albbruck Argen Birs
 "Bregenzer Ache" Duessel Elde Emscher Erft
 Glatt Hinterrhein Ill Kander Kinzig
 Kraichbach Lahn Lauter Leiblach Leimbach
 Leopoldskanal Lippe Main Mosel Murg Nahe
 Neckar Queich Ruhr Schussen Sieg Speyerbach
 Thur Toess Vorderrhein Weschnitz Wied Wiese
 Wupper Wutach
2845 Donau Abens Altmuehl Blau Breg Brenz Brigach Cerna
 Donaudelta Donaukanal Drau Eipel Enns Fischa
 Friedberger Ach Grosse Laaber Grosse Muehl
 Guenz Hron Iller Ilz Inn Ipel Isar Jantra
 Jiu Kamp Kleine Paar Krems Lauchert Lech
 Leitha March Mindel Morava Naab Olt Paar
 Pruth Raab Regen Riss Save Schmutter

17

 Schwechat Temesch Theiss Timok Traisen Traun
 Vils Vah Woernitz Ybbs Zusam

If you want to output the longest rivers first, you just have to replace the outer m with m-.

Our rivers.tabh file also contains an additional repeating group for each river

LAND, BUNDESLANDm m, which indicates through which states and federal states the river flows. In

rivers.tabh, the RIVER is superordinate to the federal state. If you want to reverse this, you can do

this again simply by specifying the header of the desired table.

Program 6.3: Restructuring of the rivers file.

aus rivers.tabh
gib BUNDESLAND,RIVERm m

Result (tabh):

BUNDESLAND, RIVERm m
Baden Württemberg Donau Iller Neckar Rhein
Bayern Abens Donau Guenz Iller Inn Isar
 Lech Main Mindel Naab Regen Saale
 Wertach Woernitz
Berlin Havel Spree
Brandenburg Aland Elde Havel Neisse Oder Spree
 Stepenitz Uecker
Bremen Weser
Hamburg Alster Elbe Este Wandse
Hessen Fulda Main Neckar Rhein Werra Weser
Mecklenburg Vorpommern Aland Elde Havel Loecknitz Oder
 Peene Stepenitz Uecker Warnow
Niedersachsen Elbe Este Fulda Jeetze Loecknitz
 Oste Werra Weser
NordrheinWestfalen Rhein Ruhr Weser Wupper
RheinlandPfalz Mosel Rhein Saar
Saarland Saar
Sachsen Elbe Neisse Spree
Sachsen Anhalt Bode Elbe Havel Ilm Saale Unstrut
Schleswig Holstein Alster Elbe Stoer Trave Wandse
Thüringen Ilm Saale Unstrut Werra

As a result of this free restructuring, all rivers that flow through it are collected for each federal state.
The federal states and the rivers within the federal states are sorted. A river can occur here in several
federal states. Each state only appears once, as we have chosen a lot as the outer collection. The

beginning of a part of the program can also be marked with aus (from).

Program 6.4: Form a union (all student IDs contained in one of the tables).

aus exams.tab,projects.tab
gib STIDm

Result (tabh):

18

STIDm
1234 1245 3456 4567 5678

Here exams.tab and projects.tab are the following tables:

STID, COURSE, MARK m,(STID, PROJ, HOURS m)
1234 Algebra 1 1234 Fritz 4
1234 Geschichte 1 1234 Otto 2
1234 Logik 2 1245 Konfuz 5
1245 Algebra 3 1245 Ming 4
1245 Datenbanken 1 1245 Otto 6
1245 Otto 1 4567 Monet 10
3456 Datenbanken 1 5678 Monet 20
3456 OCaml 2
5678 Apel 1
5678 Repin 1

Program 6.5: Take an intersection (all student IDs contained in both tables).

aus exams.tab, projects.tab
igib STIDm

Result (tabh):

STIDm
1234 1245 5678

With igib (see chapter 7) "joins" can also be expressed and thus queries to entire databases can be

formulated. The following queries refer to a database uni.tab, the second table of which is

unstructured. The queries do not have to be modified or only slightly modified if all tables from

uni.tab are unstructured (relational).

FAC, DEAN, BUDGET, STUDCAP m

Inf Reichel 10000 500
Kunst Sitte 2000 600
Mathe Dassow 1000 200
Philo Hegel 1000 10
STID, NAME, LOC?, STIP, FAC, (COURSE, MARK m),(PROJ, HOURS m) m
1234 Ernst Oehna 500 Mathe Algebra 1 Fritz 4
 Geschichte 1 Otto 2
 Logik 2
1245 Sophia Berlin 400 Inf Algebra 3 Konfuz 5
 Datenbanken 1 Ming 4
 Otto 1 Otto 6
3456 Clara Oehna 450 Inf Datenbanken 1
 OCaml 2
4567 Ulrike 400 Kunst Monet 10
5678 Kaethe Gerwisch 0 Kunst Apel 1 Monet 20
 Repin 1

19

The database consists of 2 tables. The table STUDENTS is structured, since 7 components are stored for

each record (record = structured tuple = student) and the last two components are themselves again

small tables. The penultimate component of Clara, for example, contains two exam-results and the last

the empty set of projects. The FACS table is flat (1. normal form = relational).

Program 6.6: Calculate the university's total budget.

aus uni.tab
++ BUDGET

Result:

14000

Program 6.7: Calculate the overall budget and the average budget of the university.

aus uni.tab
gib SUMBUD,TOTBUD
 SUMBUD:= BUDGET! ++
 AVGBUD:= BUDGET! ++:

Result:

SUMBUD, AVGBUD
14000 3500.

Since the last two lines start with more than 3 spaces, they still belong to the previous line from a logical
point of view.

Program 6.8: How many faculties and students does the university have.

uni.tab
++1

Result (tab):

4 5

Program 6.9: Give the corresponding students with grades for each course.

aus uni.tab
gib COURSE,(NAME,MARK b)m

Result:

COURSE, (NAME, MARK b) m
Algebra Ernst 1
 Sophia 3
Apel Kaethe 1
Datenbanken Clara 1
 Sophia 1
Geschichte Ernst 1
Logik Ernst 2
OCaml Clara 2

20

Otto Sophia 1
Repin Kaethe 1

Program 6.10: Give all the records (struples) that contain 1234.

aus uni.tab
avec 1234

Result (hsq=hierarchical sequential):

STID NAME LOC STIP FAC
 COURSE, MARK
 PROJ HOURS
 FAC DEAN BUDGET STUDCAP
1234 Ernst Oehna 500 Mathe
 Algebra 1
 Geschichte 1
 Logik 2
 Fritz 4
 Otto 2

Program 6.11: Select in all tables that contain the student identifier for the student with the number
1234.

uni.tab
avec STID=1234

Result (hsq):

STID NAME LOC STIP FAC
 COURSE MARK
 PROJ HOURS
 FAC DEAN BUDGET STUDCAP
1234 Ernst Oehna 500 Mathe
 Algebra 1
 Geschichte 1
 Logik 2
 Fritz 4
 Otto 2
 Inf Reichel 10000 500
 Kunst Sitte 2000 600
 Mathe Dassow 1000 200
 Philo Hegel 1000 10

Program 6.11 only differs from Program 6.10 with regard to the FACS table. In the result of program
6.10 this is empty and in program 6.11 it remains completely. In other applications, article numbers or
part numbers, ... could also be selected instead of the student identifier (STID).

21

 7 Queries to multiple tables without joins (igib)
Program 7.1: Give the dean and his exams to the student with the number 1234.

aus uni.tab
avec STID=1234
igib NAME,DEAN,(COURSE,MARK m)m

Result:

NAME, DEAN, (COURSE, MARK m) m
Ernst Dassow Algebra 1
 Geschichte 1
 Logik 2

Here a "join" is implemented without a join condition. If you were to use gib instead of igib, the

result set would remain empty, since gib does not establish a connection between NAME and DEAN via

FAC.

Program 7.2: Calculate the number of ones for each faculty.

aus uni.tab
avec MARK=1
gib FAC,CNT m
 CNT:=MARK! ++1

Result (tab):

FAC, CNT m
Inf 3
Kunst 2
Mathe 2
Philo 0

Program 7.3: Try the following program.

aus uni.tab
avec DEAN in [Reichel Dassow]
gib FAC,DEAN,(NAME,STIP m)m

Result:

FAC, DEAN, (NAME, STIP m)m
Inf Reichel
Mathe Dassow

Program 7.4: Add all the students belonging to the Dassow and Reichel faculties.

aus uni.tab
avec DEAN in [Reichel Dassow]
igib FAC,DEAN,(NAME,STIP m)m

Result:

22

FAC, DEAN, (NAME, STIP m) m
Inf Reichel Clara 450
 Sophia 400
Mathe Dassow Ernst 500

Program 7.5: We are looking for all faculties that have students with at least two ones and one three.

aus uni.tab
avec {{1 1 3}} inmath MARKb
igib FAC,DEAN m

Result:

FAC, DEAN m
Inf Reichel
"b" stands for bag (multi-set).

Program 7.6: We are looking for all students who have exactly 2 ones.

aus uni.tab
avec MARKl = [1 1]
gib STUDENTS

Result (hsq):

STID NAME LOC STIP FAC
 COURSE, MARK
 PROJ HOURS
5678 Kaethe Gerwisch 0 Kunst
 Apel 1
 Repin 1
 Monet 20

Program 7.7: We are looking for all of Ernst's data (including his faculty data).

aus uni.tab
avec NAME=Ernst
igib

Result (hsq):

STID NAME LOC STIP FAC
 COURSE MARK
 PROJ HOURS
 FAC DEAN BUDGET STUDCAP
1234 Ernst Oehna 500 Mathe
 Algebra 1
 Geschichte 1
 Logik 2
 Fritz 4
 Otto 2
 Mathe Dassow 1000 200

23

The program does not have to be changed if all tables from uni.tab are in the first normal form

(unstructured).

Program 7.8: Determine the total price of a longer visit to the pub using a separate price table.

<TABH!
ARITICLE, COUNTl m
Bier 2 4 5
Brause 3 2
Schnitzel 4 3
!TABH>
,articles.tab
igib TOT,(ARITICLE,TOT m) TOT:=COUNT*PRICE! ++

Result:

TOT, (ARITICLE, TOT2 m)
79.3 Bier 29.7
 Brause 16.
 Schnitzel 33.6

articles.tab:

ARITICLE, PRICE m
Bier 2.7
Brause 3.2
Schnitzel 4.8
Steak 4.8

Program 7.9: We are looking for the dean of Ernst. (query to a relational database.)

unirelational.tab
avec NAME=Ernst
igib DEAN

Result:

DEAN
Dassow
unirelational.tab has the following TTD:
TABMENT! UNIRELATIONAL
UNIRELATIONAL! STUDENTS,EXAMS,PROJECTS,FACS
PROJECTS! (STID,PROJ,HOURS m)
STUDENTS! (STID,NAME,LOC?,STIP,FAC m)
EXAMS! (STID,COURSE,,MARK m)
FACS! (FAC,DEAN,BUDGET,STUDCAP m)

Program 7.10: Give me all the data from Ernst.

unirelational.tab
avec NAME=Ernst
igib

24

Result (hsq):

STID NAME LOC STIP FAC
 STID COURSE MARK
 STID PROJ HOURS
 FAC DEAN BUDGET STUDCAP
1234 Ernst Oehna 500 Mathe
 1234 Algebra 1
 1234 Geschichte 1
 1234 Logik 2
 1234 Fritz 4
 1234 Otto 2
 Mathe Dassow 1000 200

It should be noted that all of Ernst's data appear in the result without using a cross product. Otherwise
the projects "Fritz" and "Otto" would appear three times each.

Program 7.11: We are looking for the exam results of the student with the number 1234.

unirelational.tab
avec STID=1234
igib NAME,DEAN,(COURSE,MARK m)m

Result:

NAME, DEAN, (COURSE, MARK m) m
Ernst Dassow Algebra 1
 Geschichte 1
 Logik 2

It should be noted that the result contains information from three tables without the need for a join
condition.

 8 A BOM explosion with o++o number

Program 8.1: We are looking for all assemblies and individual parts of the Polo and the motor.

<TAB!
SUPPART, PROPERTY, (SUBPART, CNT m) m
Buchse zylindrisch
Felge glatt
Polo modern Rad 4
 Motor 1
 Karosse 1
Golf schnell Rad 4
 Reserverad 1
 Karosse 1
 Klimaanl 1
 Motor 1
Karosse blau

25

Klimaanl robust
KolbRing rund
Kolben leicht KolbRing 2
 Buchse 1
Motor schwer Kolben 6
 Schraube 8
Rad rund Schraube 5
 Reifen 1
 Felge 1
Reserverad rund Schraube 4
 Reifen 1
 Felge 1
Reifen schwarz
Schraube stabil
!TAB>
onrs OTTONR ! [Motor Polo] # introduction of o++o-numbers (ONR)
RCNT:=firstonr CNT nextonr RCNT pred * CNT at CNT # ONR-Recursion
gib SUPPART,(SUBPART,TOT m) m TOT:=RCNT!++

Intermediate result after the first statement:

SUPPART,PROPERTY, (OTTONR, SUBPART, CNT m) l
Motor schwer 1 Schraube 8
 2 Kolben 6
 2.1 KolbRing 2
 2.2 Buchse 1
Polo modern 1 Rad 4
 1.1 Schraube 5
 1.2 Reifen 1
 1.3 Felge 1
 2 Motor 1
 2.1 Schraube 8
 2.2 Kolben 6
 2.2.1 KolbRing 2
 2.2.2 Buchse 1
 3 Karosse 1

Intermediate result after applying the recursive o++o number assignment:

SUPPART,PROPERTY, (OTTONR, SUBPART, CNT, RCNT m) l
Motor schwer 1 Schraube 8 8
 2 Kolben 6 6
 2.1 KolbRing 2 12
 2.2 Buchse 1 6
Polo modern 1 Rad 4 4
 1.1 Schraube 5 20
 1.2 Reifen 1 4
 1.3 Felge 1 4
 2 Motor 1 1

26

 2.1 Schraube 8 8
 2.2 Kolben 6 6
 2.2.1 KolbRing 2 12
 2.2.2 Buchse 1 6
 3 Karosse 1 1

final result:
SUPPART,(SUBPART, TOT m) m
Motor Buchse 6
 Kolben 6
 KolbRing 12
 Schraube 8
Polo Buchse 6
 Felge 4
 Karosse 1
 Kolben 6
 KolbRing 12
 Motor 1
 Rad 4
 Reifen 4
 Schraube 28

 9 Generation of images
Program 9.1: Plot the points of three functions in multiple colors.

sin and the first derivation of sin
the resulting table can be visualized with the bild-button
Xl:= -4 ... 10!0.005
SIN:= X sin
DERIVATION:= X+0.001 sin - (X sin) : 0.001
NULL:=X*0
RGB1:= green leftat SIN
RGB2:= red leftat DERIVATION
RGB3:= black leftat NULL

Extract from the result table (without color values) of 2800 points:

X, SIN, DERIVATION, NULL l
-4. 0.756802495308 -0.654021913139 -0.
-3.995 0.75352483081 -0.657796099859 -0.
-3.99 0.75022832823 -0.661553841711 -0.
-3.985 0.746913069981 -0.665295044752 -0.
-3.98 0.743579138944 -0.66901961545 -0.
-3.975 0.740226618468 -0.672727460694 -0.
-3.97 0.736855592364 -0.676418487786 -0.
-3.965 0.73346614491 -0.680092604451 -0.
. . .

27

 9.96 -0.510032040244 -0.859900243999 0.
 9.965 -0.514326423954 -0.857337195738 0.
 9.97 -0.518607949529 -0.854752714092 0.
 9.975 -0.522876509934 -0.852146863673 0.
 9.98 -0.527131998452 -0.849519709627 0.
 9.985 -0.531374308698 -0.846871317632 0.
 9.99 -0.535603334614 -0.844201753898 0.
 9.995 -0.539818970475 -0.841511085165 0.

Except for the color values, nothing else is done here than setting a point three times for each of the
2800 elements. Every student learns this procedure – to set up a table of function values. Here this
simple method already leads to a visualization. Although only individual points are given here, one has
the impression of function course. With suitable o++o programs, not only individual functions but also
entire images, such as flags and random color gradients, can be generated with the image button.

Program 9.2: Generation of an o++o logo:

RGB:=darkgreen
X3l:= -2 ... 5!0.02
Y3l:= -2 ... 2!0.02 at X3
=: $HINTERGRUND
aus empty_t
Xl:= -2. ... 1.5!0.02
Y1:= 4 - (X*X) sqrt
Y2:=if X< -1.5 then 0 else if X >1.13 then 1. else 2.25 - (X*X) sqrt
Zl:= Y2 ... Y1!0.02 at Y2
RGB:=10*Z cos abs,,1,,0 sin abs leftat Z
STUFE:=if -0.5 <X & X< 0. | (0.5<X & X<1.) then 0.2 else (if -0. <X & X<
0.5 then 0.65)

28

Wl := 0 ... STUFE!0.01 at STUFE
RGB:=black leftat W #1,,10*W*X sin abs,0 leftat W
=: $OBENLINKS
$OBENRECHTS:= $OBENLINKS *(-
1,1,1,1,1,1,1,1,1,1,1,1)+(3,0,0,0,0,0,0,0,0,0,0,0)
$UNTENLINKS:=$OBENLINKS * (1,-1,-1,-1,1,1,1,-1,1,1,1,-1)
$UNTENRECHTS:=$OBENRECHTS*(1,-1,-1,-1,1,1,1,-1,1,1,1,-1)
aus $HINTERGRUND,$OBENLINKS,$OBENRECHTS,$UNTENRECHTS,$UNTENLINKS
,<TAB!
X, Y l
-30 -30
!TAB>

The logo can be generated again with the image-button:

The program currently needs a relatively long time (more than a second), so you should only do such a
calculation with a local server. Refining the step sizes leads to longer processing time. By making small
modifications in the program, you get a variety of changes in the picture. In section 12 (o++o for school)
another example (12.16) for the generation of images is given.

29

 10 Diagrams
Program 10.1: Calculate the average BMI per age and the BMI per person and age for all people
over 20 as well as the overall average.

<TAB!
NAME, LENGHT, (AGE, WEIGHT l) l
Klaus 1.68 18 61
 30 65
 56 80
Rolf 1.78 40 72
Kathi 1.70 18 55
 40 70
Walleri 1.00 3 16
Viktoria 1.61 13 51
Bert 1.72 18 66
 30 70
!TAB>
avec NAME! 20<AGE
gib BMI,(AGE,BMI,(NAME,BMI m) m) BMI:=WEIGHT:LENGHT:LENGHT!++:
rnd 1

The TAB brackets indicate that the enclosed data correspond to the TAB representation. The above

condition selects person records, i.e. NAME,LENGTH,(AGE,WEIGHT l)-tuples (structured tuples or

struples). Since a person has several AGE information, it must be quantified.

NAME! 20 <AGE

therefore selects all persons who have a corresponding age entry. That is, the existential quantifier is not
written, but belongs to every condition. In this small example, you could of course also make the
selection by hand.

Result (tab):

BMI, (AGE, BMI2, (NAME, BMI3 m) m)
23.1 18 21. Bert 22.3
 Kathi 19.
 Klaus 21.6
 30 23.3 Bert 23.7
 Klaus 23.
 40 23.5 Kathi 24.2
 Rolf 22.7
 56 28.3 Klaus 28.3

The example shows that you can reverse a hierarchy simply by specifying the desired scheme. As a
result, the name is subordinate to the age.

The result can be displayed as a diagram chart with two clicks, for example. To do this, we assign a
certain color to each level. The last line is required so that the age is not shown as a column but as a
signature.

30

RGB:=red leftat BMI
RGB2:=orange at AGE
RGB3:=green at NAME
AGE::=AGE wort

Here you can see the advantages of diagrams based on structured tables.

1. The superordinate columns can be highlighted (zero-th level red; super-ordinate first level
orange, second level green)

2. The column names are shorter and clearer, since the values of the super-ordinate columns do not
have to be repeated (instead of Bert30 and Klaus30, for example, only Bert and Klaus have to be
output)

Program 10.2: A graph with a gradient from green to brown.

Xl:= 0 ..100
Y:= X at X
RGB:= (green*(100-X) :100)+ (brown *X :100) leftat Y
X::=X wort

31

 11 "Hello otto" - gimmick
Program 11.1: Output two words.

Hallo otto

The result is a list of two words (WORTl).

Program 11.2: Output a pair of two words.

Hallo, otto

The result is a pair of 2 words (WORT,WORT). The comma separates components of tuples. A tuple (the

pair is a 2-tuple) is usually output horizontally and elements of simple collections (lists, sets, multisets)

are output vertically in tabh- format. In order to save space, simple collections are also given out

horizontally with tabh-button.

Program 11.3: Output a text with spaces.

"Hallo otto"

The result is of the type (scheme) TEXT.

Program 11.4: Connect two words.

Hallo + otto

The result is a word. + also serves as a connection operation (concatenation) of texts or words if both

input values are words or texts.

Program 11.5: Give out a greeting with a list of words.

32

GREETING:=[Hallo otto]

The result is a list of two words.

Program 11.6: Output two words with two column names.

DEAR:=Hallo
GREETING:=otto

The result is a pair (2-tuple) of single-column tables. The scheme is: DEAR, GREETING

Program 11.7: Output text with a tag (column name).

GREETING:=“Hallo otto“

Result:

GREETING
Hallo otto

Program 11.8: Sort some words.

GREETING:={otto Hallo}

Result in ment-format:

<GREETING>
Hallo
otto
</GREETING>

Program 11.9: Sort some words.

GREETINGm:= otto Hallo

Result in ment-Format:

<TABM>
 <GREETING>Hallo</GREETING>
 <GREETING>otto</GREETING>
</TABM>

Sets and bags are always sorted; the order of the elements remains the same for lists.

 12 o++o for School
Federal Chancellor of Germany A. Merkel has repeatedly stated: “In addition to reading, computing and
writing, every student should also learn to program.” Programming skills are an essential aspect of the
requirements that the modern information society places on students for participation in society and in
future professional life. We are of the opinion that o++o as an easy-to-use table-oriented programming
language is the right key for this.

o++o dispenses with loops. Nevertheless, o++o is very expressive. You can use it to do not only
compact queries but also a variety of calculations for structured tables and structured documents.

33

o++o uses and teaches many math concepts, so we see the main benefits of teaching in math class, just
as the essential skills for using the calculator are covered in math class. o++o uses the following
concepts in particular: set, multi-set, list, equality and inclusion relationships of these; tuple; powerful
operations for selecting; calculations; restructuring, sorting and aggregating (sum; average; …) etc.

Spreadsheet programs such as EXCEL and the database standard query language SQL, on the other
hand, do not have any structured table schemes. In this difference lies the decisive higher benefit of
o++o.

Initial tests with preschool children suggest that computations with structured tables are easier than with
decimal numbers. We want to add more o++o sample programs. The first two could be interesting for
the lower grades.

Program 12.1: Calculate 4 times 3 with unary numbers (|).

CHILDl := Ernst Clara Ulrike Sophia
APPLEl := | mal 3 at CHILD
++1 APPLE

Instead of | mal 3 you can also write [| | |]. That might be better at first, but you would have

problems with larger numbers. The result is 12. What is particularly interesting, however, is the

intermediate result in tabh-format after the first two program lines:

CHILD, APPLEl l
Ernst | | |
Clara | | |
Ulrike | | |
Sophia | | |

You can see here that the multiplication represents the area of a rectangle, which is no longer the case
with the decimal number multiplication.

Program 12.2: Calculate (3 + 4) * 5 using unary numbers.

Xl:= | mal 3
Xl:= | mal 4
Yl:= | mal 5 at X
++1 Y

Result:

35

Program 12.3: Find X if X times X is 25.

Xl:= 1 .. 10
XMALX:= X*X

Result:
X, XMALX l
 1 1
 2 4

34

 3 9
 4 16
 5 25
 6 36
 7 49
 8 64
 9 81
10 100

Analogous to the logarithm table, the pupil can now read (select) the result. The selection can then be
implemented later by o++o:

avec XMALX = 25

or

avec XMALX <= 25
last

This approach can be applied to a wide variety of problems.

Program 12.4: Find the value of a simple term.

2*3+4

Result:

10

* and + each have 2 input values. First, 2 * 3 (6) is calculated. The 6 is the first input value of +, so that
a total of 10 results. So here it is simply calculated from left to right.

Program 12.5: Write the term cos3(sin2(3.14159)) in o++o.

pi sin hoch 2 cos hoch 3

Result:

1.

In our opinion, the starting term is difficult to read for the average consumer. You start with pi and go

left to sin; then right to the power of 2; now you move back to the left to cos and finally to the right to

power 3. This notation was probably introduced to save brackets. In order to be unambiguous, the initial
term should actually look like this:

(cos((sin(3.14159)) 2)) 3

That is certainly even more difficult to read and you move even more from left to right and vice versa.

Program 12.6: Write the term sin2(x)+cos3(y) in o++o.

X sin hoch 2 + (Y cos hoch 3)

Result:

Empty_t

35

You could write all terms in o++o without brackets, but then certain terms would have to be written on
multiple lines and assignments would have to be used.

No result appears because X and Y have no value. This can be changed, for example, in the following

way:

X:=2
Y:=3
Z:=X sin hoch 2 + (Y cos hoch 3)

Result:

X, Y, Z
2 3 -0.14345512749

Program 12.7: How to calculate the term 2+3:4*5?

2+(3:(4*5))=2 3/20
2+((3:4)*5)=5 3/4
o++o: ((2+3):4)*5=2+3:4*5=6 1/4

One recognizes in particular that one does not get along with the school wisdom “point calculation goes
before line calculation” yet. You need the rule “from left to right” in addition.

Program 12.8: Calculate the average of several marks.

1 2 3 1 2 ++:

Result:

1.8

From a methodological point of view, this program can be improved by adding the brackets for lists:

[1 2 3 1 2] ++:

You can now see that the averaging operation ++: has an input value, namely a list, and that ++:

follows the input value. Since users usually do not want to type much, we assume that the first notation
will be used more often in practice.

Program 12.9: Calculate the averages of the structured table marks.tabh for each subject.

marks.tabh
TOT:=MARKl ++:

marks.tabh could look like this:

SUBJECT,MARKl l
Ma 1 2 1 3 1 2
Phy 4 3 2 2 1

Here l abbreviates list. That is, marks.tabh is a structured table (list) that contains a list of MARKs

for each subject.

The result of the request again in "tabh-format":

36

SUBJECT, TOT, MARKl l
Ma 1.66666666667 1 2 1 3 1 2
Phy 2.4 4 3 2 2 1

Program 12.10: Form the sum of the numbers from 1 to 100 (task from Gauss class 5).

1 .. 100 ++

Like addition and multiplication, ".." has two input values (1 and 100). The following list is created as
an intermediate result:

ZAHLl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100

These numbers are then added up, so that 5050 results.

Program 12.11: Approximately calculate the maximum of the sine function in the interval [1,2].

1 ... 2!0.001 sin max

"..." requires 3 input values: the start value 1, the end value 2, and the increment 0.001. This results in

the numbers 1 1.001 1.002 1.003… 1.999 2.

The sine function is applied to each of the numbers, resulting in 1001 numbers again. The function max

then finds the maximum from this list.

Although this is an approximation method, the exact value 1 comes out as the step size is further

refined. sin and max each have an input value (here a list) but the output value of sin is again a list

and max only generates one number, since this is an aggregation function. The second and third input

values of a ternary operation (“…” in the example) are each separated by a "!". This is necessary in o++o,

because the comma is already used for pair-operation and the empty-space already separates list
elements.

Program 12.12: Approximately compute the minimum of the polynomial „X3 + 4X2 -3X+2“ in the
interval [0, 2]. Output also the associated X value.

Xl:= 0 ... 2!0.001
Y:= X poly [1 4 -3 2]
MINI:= Yl min
avec Y = MINI

avec is French and describes a selection. A concrete polynomial of a variable X always has only one

input value that is used for X. poly is more general and has 2 input values:

1. The input value for X, which here accepts all numbers that were generated in the first line.

2. A list of numbers that correspond to the coefficients of the particular polynomial.

37

The first line creates a list of numbers, all of which have been given the name X. This is best seen in the
xml- or ment-representation:

<X>0.</X>
<X>0.001</X>
<X>0.002</X>
…

Result (tab):

MINI, (X, Y l)
1.481482037 0.333 1.481482037

Program 12.13: Approximately calculate a null of the cosine function in the interval [1, 2].

Xl:= 1 ... 2!0.0001
avec X cos < 0
avec X pos = 1

Result:

Xl
1.5708

After the first selection, only the X values with a function value less than 0 remain. From these, the first

value is selected in the second step. Since we know that cos has only one null in the considered

interval, this is approximated by the result.

Program 12.14: Given 5 annual growth numbers, calculate total growth. Round the result to one digit
after the decimal point.

Wl:= 0 1.5 2.1 1.3 0.4 1.2
ACCU:= first 100. next ACCU pred *(W:100+1) at W
rnd 1

Result (tab):

W, ACCU l
0. 100.
1.5 101.5
2.1 103.6
1.3 105.
0.4 105.4
1.2 106.7

The first ACCU value results from the expression after first (100.). For the second value, the value

100 is used for ACCU pred and the term after next is evaluated. It results in 101.5. This number

is used again in ACCU pred and the next term is calculated again (around 103.6), ... until the last W

value is reached. pred is the predecessor.

Program 12.15: Calculate the area under the sine curve in the interval [0, pi] approximately.

38

0 ... pi!0.0001 sin *0.0001 ++

Result:

1.99999999867

All numbers between 0 and pi are generated one after the other, then the sine of each number is

calculated and then each number is multiplied by 0.0001. 10000 rectangular areas are created, which

are then added up.

Program 12.16: Pascal's triangle:

Xl:=1 ..9
Y:=first 1 next Y pred,0 + (0,Y pred) at X

Result (hsq):

X,Y l
X Y
1 1
2 1 1
3 1 2 1
4 1 3 3 1
5 1 4 6 4 1
6 1 5 10 10 5 1
7 1 6 15 20 15 6 1
8 1 7 21 35 35 21 7 1
9 1 8 28 56 70 56 28 8 1

Here Y represents a tuple of values. The result is therefore no longer a normal table. It can therefore not
be output in tab-format.

Program 12.17: Move and mirror a triangle

Class 7 p.14 No. 5 (red) secondary school Saxony-Anhalt
Math textbook
please click bild
Xl:= -10 ... 10!0.02
Y:=0*X
X0l:= 0
Y0l:= -6 ...4!0.02 at X0
X1l:= -9 .. 9
Y1l:= -0.1 ... 0.1!0.01 at X1
X2l:= -0.1 ... 0.1!0.01
Y2l:= -5 .. 3 at X2
=: $KOORDINATEN
aus <TAB!
X3,Y3 l
1 -2
3 -4
6 -2
1 -2

39

!TAB>
route
=: $DREIECK
aus $KOORDINATEN ,$DREIECK
RGBROT:=red
,$DREIECK +(-2,3) # move
RGBBLAU:=blue
,$DREIECK *(-1,1) # mirror on Y-axis

Result (bild-button):

The above examples make it particularly clear that the tasks can be solved without knowledge of
differential and integral calculus. With o++o, math lessons can be supported in a variety of ways. This
ranges from grade 7 or lower to grade 12. It concerns: Calculating with natural numbers, decimal
numbers, rational numbers of any size, approximate calculation of nulls of any functions, derivations,
areas under curves, extreme values (can already be taught in secondary school), probability calculation
etc. With o++o things can be calculated in a simple way that are otherwise only dealt with theoretically.
As a result, the understanding of the concepts can be significantly improved, expanded and deepened.
Further information on o++o can be found at ottops.de.

We believe that o++o offers special advantages for mathematics and computer science lessons but can
also be used meaningfully in the other subjects (queries to Wikipedia).

40

 13 Closing words, a quote from Adam Ries

Ein mensch dem zahl (tabment)1) verborgen ist
Leichtlich der verführt wird mit list
Das nimm zu hertzen bitt ich sehr

Und jeder sein Kind rechnen (programmieren)1) lehr ...

Adam Ries
1) Added by the author

 14 Literature
[AB84] S. Abiteboul, N. Bidot, „Non First Normal Form Relations: An Algebra Allowing Data

Restructuring“ Rapports de Recherche No347, Institute de Recherce en Informatique et en
Automatique, Rocquencourt, France, Nov. 1984

[AC75] M. M. Astrahan, D. D. Chamberlain, „Implementation of a Structured English Query
Language“, Communications of the ACM 18 10, Oct. 1975 pages 580-587

[BCFFRS10] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,Jonathan Robie,
Jérôme Siméon, XQuery 1.0: An XML Query Language (Second Edition), W3C
Recommendation 14 December 2010 (Link errors corrected 3 January 2011),
http://www.w3.org/TR/2010/REC-xquery-20101214/

[Ben80] K. Benecke, „Signaturketten und Operations- und Mengenformen über Signaturketten“,
Dissertation A, TH Magdeburg 1980

[Ben82] K. Benecke. “AFUL- Eine Anfragesprache für Datenbanken”. In Weiterbildungszentrum für
mathematische Kybernetik und Rechentechnik/Informationsverarbeitung, Studientexte
Datenbanken TU Dresden Heft 59, pages 100 – 107, 1982.

[Ben88] K. Benecke, "Hierarchische Datenstrukturen", Habilitation, Technische Hochschule

 Magdeburg, 1988

[Ben91] K. Benecke, "A powerful Tool for Object-Oriented Manipulation", in "Object-Oriented
Databases: Analysis, Design & Construction (DS-4) R.A. Meersmann, W. Kent, S. Khosla
(editors), Elsevier Science Publisher B.V. (North Holland) 1991, S. 95-121

[Ben98] K. Benecke, “Strukturierte Tabellen – Ein neues Paradigma für Datenbank- und
Programiersprachen”, Deutscher Universitätsverlag, ISBN 3-8244-2099-6 Wiesbaden 1998

[Ben16] K. Benecke, „o++oPS The simplest Programing Language“, BoD, 2016, ISBN 978-3-7412-
4281-6

[BH11] K. Benecke, A. Hauptmann, “Does the School Need a Tabular Computer Language?”
http://www.infonomics-society.org/IJDS/Does%20the%20School%20Need%20a
%20Tabular%20Computer%20Language.pdf, pages 520-527, 2011.

41

http://www.infonomics-society.org/IJDS/Does%20the%20School%20Need%20a%20%20Tabular%20Computer%20Language.pdf
http://www.infonomics-society.org/IJDS/Does%20the%20School%20Need%20a%20%20Tabular%20Computer%20Language.pdf

[Cod70] E.F.Codd, „A Relational Model of Data for Large Shared Data Banks“, Communications of the
ACM, Vol. 13, No. 6 June 1970, S. 377-387

[Hau10] A. Hauptmann, “OttoQL: Probleme der Implementation nichtrelationaler Datenbanksprachen
(mit besonderer Berücksichtigung der logischen Optimierung)”. Studienarbeit, Uni Magdeburg,
benecke-systeme, 2010.

[KR71] H. Kaphengst, H. Reichel, „Algebraische Algorithmentheorie“, VEB Robotron, Wiss.
Informationen und Berichte, Nr. 1/71 Reihe A, Sommer 1971

[Rei87] Reichel. H., Initial Computability, Algebraic Specifications, and Partial Algebras, Oxford

 UK, Claredon Press, 1987

[Rei90] W. Reichstein. “Implementation der Strichlistenoperation Operation stroke in C”,
Praktikumsbeleg, VE CS Magdeburg, 1990.

[Sch96] D. Schamschurko, „Implementation des Rumpfes des GIB-AUS-MIT-Konstrukts in CAML-
Light“, Praktikumsbeleg, DeTeCSM Magdeburg, Betreuer: K. Benecke, März 1996, 123 Seiten

[SHL75] N. C. Shu, B. C. Housel, V. Y. Lum, „CONVERT- A High Level Translation Definition
Language for Data Conversion“, Communications of the ACM, Vol.18 Nr.10,Oct., 1975, S. 557-
567

[Ull82] J. D. Ullman, „Principles of Database Systems“, Computer Science Press, Rockville, Maryland
1982

[Zem85] H. Zemanek, „Formal Definition the Hard Way“, Proc. IFIP TC2 Working Conference, Wien
1985; North Holland, S. 411-417

42

	1 Vision
	2 Our design criteria for an end-user language
	3 Calculations with o++o: More than a pocket calculator
	4 Schemes and TTDs of structured tables
	5 Simple recursive assignments
	6 Queries
	7 Queries to multiple tables without joins (igib)
	8 A BOM explosion with o++o number
	9 Generation of images
	10 Diagrams
	11 "Hello otto" - gimmick
	12 o++o for School
	13 Closing words, a quote from Adam Ries
	14 Literature

