

o++o
Tabments -

Queries,
Calculations,

Statistics
and

Visualization

Klaus Benecke
(24.10.2023)

Copyright © 2022 Klaus Benecke. All rights reserved.

2

Foreword

What does it mean that o++o (ottoPS) is probably the simplest programming language?

It does not mean that o++o consists of very simple concepts. It does mean, however, that its
application is relatively simple. o++o is not simple, but solving problems is easier than with other
programming languages of equal expressiveness. o++o behaves like a natural language. English or
German is not easy to learn either. However, natural language can be used - to a certain extent -
even by children under the age of four.

We are convinced that the basic idea behind our best operation (stroke list operation) is easier to
understand than the multiplication algorithm of decimal numbers. In our opinion, the concepts of
o++o are relatively difficult to formalize, but they can often be described by simple algorithms that
almost every user (= OttoNormalVerbraucher) can use in the future.

Is o++o a programming language?

o++oPS is designed as an end-user language, but not for programming complex database systems or
compilers. It was developed to support people in solving their mathematical everyday requirements.
Daily challenges are first of all (ad hoc) queries to tables (databases), documents or collections of
tables and documents. It also includes financial calculations or in other daily context: determination
of function values, determination of zeros or extrema of functions and solving a system of equations
(calculation with matrices). In addition, o++o should be able to generate and manipulate images and
visualize tables and documents in the form of diagrams. The most important innovative ideas of o++o
compared to other approaches are connected with repeating groups. This means that a given object
may contain not only null or one value for an attribute, but also multiple values. For such structures,
known for more than 50 years in computer science, o++o provides new, powerful and easy to use
operations.

This book contains a variety of sample queries to illustrate the basic concepts.

3

1 Table of content
1 Calculations and spreadsheet applications with o++o ... 14

2 A savings bank account ... 26

3 Table Recursion - Exponential Growth .. 30

4 Hello otto - gimmick .. 39

5 o++o for kindergarten?.. 41

5.1 Stroke Lists... 41

5.2 The conversion operations zahl and |l .. 42

5.3 The operations + * ... 42

5.4 o++o programs to kindergarten? .. 43

6 o++o in School Lessons .. 46

7 Multiplication, School and Digitization .. 52

7.1 Who can multiply in their head? .. 52

7.2 Who can multiply in writing? ... 53

7.3 Who can program the multiplication? ... 53

7.4 Stroke list multiplication versus decimal multiplication ... 59

7.5 How could enrich o++o the school curriculum? .. 59

7.6 Can the stroke list operation be taught as early as third grade? ... 61

7.7 Does the school calculator from Texas-Instruments calculate wrong?.................................. 62

7.8 Is EXCEL morally worn out? ... 69

7.9 o++o Proofs .. 70

7.10 An example of deep digitization .. 71

8 Schemes and Structured Tables ... 73

9 Tabment types (TTs) and structured documents ... 77

10 A university database ... 86

10.1 Selection (avec sans) .. 87

10.2 Calculations (:=) ... 92

10.3 Restructuring (gib) ... 95

10.4 A simple join and nested queries ... 103

10.5 A user-friendly join (igib) .. 106

11 Queries to Wikipedia (keys) ... 109

12 Special restructuring operations (onrs verti hori) .. 117

13 Some operations for text processing with o++o (+ -+ cil zil satzl) .. 120

14 Format with o++o ('3 '4 norm3e norm3m mant rnd) .. 122

15 Structured diagrams .. 124

16 Multiple diagrams .. 137

17 Image generation ... 140

4

18 Image editing ... 143

19 A baker application (CSS) ... 151

20 Appendix A: List of operations and keywords of o++o ... 159

21 Appendix B: Grammar .. 180

22 Appendix C: List of o++o color names .. 194

5

List of programs and queries

"Code" a text ... 120
-+text ... 120
a problem with hierarchical paths................. 76
a simple bill .. 93
a wave over a photo 150
Addition ... 14
Addition of rational numbers 14
an o++o-program, for which EXCEL needs

more than 6 worksheets 69
apo3 apo4 .. 122
approximate zeros ... 19
area of circle .. 46
area under a curve .. 19
area under a non-continuous function 20
area without integral calculus 60
assignment and gib .. 93
assignment with redundancy 103
avec loop photo .. 149
avec 2 times ... 88
avec after gib ... 84
avec jpg .. 144
avec twice .. 87
average (weighted) .. 22
Average of several marks 15
bild ... 140
BMI .. 94
calculations in bills 158
chart .. 126
chess board problem 34
circumference and area of circles 21
circumference and area of rectangles 21
circumference of several circles 21
colors in bild .. 141
column chart with signatures 124
combine fields who are not on a hierarchical

path ... 103
Comma is an ordinary operation 15
computations and formatting CSS............... 151
computations with assignment 92
computations without assignment 92
compute pi by zeros 46
concatenate 2 words 39
concatenation of words and text 120
Contrast total revenues and expenditures 26
count animal species with strokes 61
count at serveral levels.................................. 74
count at several target levels 75
count cars .. 44
count characters .. 82

count characters and words 82
count componentwise 67
count different kinds of animals 44
count in documents 82
count in wiki .. 110
Count of binary numbers 14
count pixels ... 144
count struples ... 73
counting in structured tables........................ 61
create a black-cyan photo 148
diagram by click .. 16
diagram with signatures 16
Difference or List .. 14
distribute 15 apples among 4 children 44
distribution with if 102
Division ... 14
Division with improved readability 14
Division with rounding 14
divisions .. 44
divrest generates a pair of numbers 16
divrest value table .. 20
document representations 80
double a photo ... 149
each of 4 children gets 3 apples 43
Edge of a cube .. 15
extreme coordinates of pixels 144
falls .. 94
falls modify colors 147
Fibonacci-numbers 47
first and last transaction 26
Flasche mit Korken.. 23
float multiplication in OCaml 54
four plus four .. 42
four times 3 ... 51
functions by column charts 131
functions with bild 141
GDP 1988 to 2014 ... 36
GDP 1992 to 2014 ... 35
generate 2 times 10 points 140
generate a bikini ... 142
generate the German flag........................... 141
grouping withaggregation 101
hori .. 119
how many turnovers? 26
how much got Ms. Heyer per year and month?

 .. 27
how much money was transferred from the

account? ... 26

6

how much money was transferred to the
account? .. 26

how much Ms. heyer got 26
how old is Claudia? .. 45
igib ... 107, 108
igib and natsel ... 107
illustration of collection symbols 95
in 121
income and expenses 27
income and expenses monthwise 28
in-relation .. 74
interests of 1 % and 9 % 30
interests of 1 % und 9 % within 200 years 32
interger multiplication in OCaml 54
interger zeros of a polynomial 46
intersection by gib 101
Introduction of two column names 15
keys .. 115
keys .. 115
keys avec ... 114
keys keys .. 115
keys like ... 112
line chart .. 29
list of 2 words .. 39
list of stroke lists .. 43
list times number... 57
local maximum .. 48
local minimum of a polynomial 61
mant .. 123
matrix multiplication in o++o 58
matrix-multiplication with o++o function 58
Maximum of numbers 15
Mengendifferenz ... 51
minimum (local) .. 19
multiple charts ... 137
multiplying a table with a number 21
my multiplication of natural numbers........... 55
Namen des in Sachsen Geborenen 74
nested join with depth three 106
nightlife in wiki .. 112
non-hierarchical path with gib 103
norm3m norm3e ... 123
number to stroke list 42
o++o program on the blackboard.................. 60
o++o proof (preparation) 70
o++o proof for mad 71
omit rows and columns 102
onrs .. 117
output two words .. 39
pack data ... 96
paint a photo ... 145
paint a photo to German flag 146
Pair of 2 independent terms 15

pair of words ... 39
Pascal triangle ... 48
photo .. 143
photo falls ... 147
plus percent .. 92
prime numbers up to 70 20
product of 5 numbers 60
Product of nubers from 1 to 100 15
restructuring with aggregation 102
reverse a hierarchy 98
sans and avec .. 91
select and sort .. 75
select certain numbers 68
select in documents 83
select pixels ... 144
selection and assignment 93
selection assignment and gib 93
selection by ? .. 97
selection by content and position 91
selection by position 50, 84
selection by word in 2 files 90
selection by words 83, 90
selection in numbers 121
selection in top level 89
selection with aggregation 92
selection with gib .. 96
selection with set .. 88
selection with two gib clauses 97
selections by content 88
selections on top level 89
selections on two levels 90
set difference by selection 101
set difference with nested query................ 101
set of two words ... 40
sine function and its derivation 48
Sine of 30 degrees .. 14
Sine of pi : 2 .. 14
six years old children wanted 45
sort a chart .. 125
sort a two levels .. 95
sort by 2 fields in one level 95
sort downwards .. 95
Sortiere die Fakultäten nach Budget und

zusätzlich nach Studentenkapazität 96
stroke list multiplication in o++o 56
stroke list multiplication shorter 56
Stroke list to number 42
structured bar chart 127
structured chart .. 130
structured chart for elections 133
structured chart of BMI 129
structured diagram 18

7

structured diagram with user defined colors
 ... 134, 135

structured join with nested query 105
structured left outer join 104
subtraction .. 43
sum columnwise .. 68
Sum of 4 numbers ... 15
sum of first 100 numbers 60
sum of many numbers 67
Sum of numbers of 1 to 100 15
table for function graph 19
table of content of wiki 110
table of values ... 18
table plus percent number 92
tag with gib .. 98
ten times ten ... 42
text .. 39
three plus four ... 51

to the power of ... 14
total price of a bill ... 22
total price of a simple bill 21
two nested joins ... 105
two selections at top level 89
two words one column 39
two words to meta and primary data 40
two words two columns 39
Type of first input value remains 14
Type of the first input value is maintaind 14
ultimo .. 91
union by gib .. 100
verti ... 118
verti hori ... 119
weighted averages .. 49
woman weighs 40 kg plus half her weight ... 23
young children wanted 45
zero of sine function 46

8

Introduction

The first computer language has already been developed during the Second World War by Konrad
Zuse. Very early languages like Fortran and Lisp have been used for more than 60 years. BASIC was
the first attempt to develop a computer language simple enough to be used by everyone. One of the
original goals of SQL was to develop an end-user language. There are now well over 100 computer
languages. Python - the easy-to-use programming language - and the other general-purpose
languages are designed for programmers. We follow the conviction; it is advantageous if every
person can understand and write computer programs.

Let us direct our view to Germany: It is to be noted that up to now there is no generally recognized
computer language which is taught or can be taught in schools for all. Spreadsheets even appear in
math books of all students, but EXCEL is not a computer language. With o++o, any student can write
certain 5-line programs where EXCEL requires 7 worksheets.

Therefore, to this day, there seems to be no universally accepted computer language worth teaching
to everyone, or at least user-friendly and powerful enough for its usefulness to be sufficiently visible
even in school education. The only widely used "languages" are associated with the use of search
engines. Here the user only has to write one, two or three words (a very simple program) and the
system finds thousands, millions or even more results. However, in this context, the user is not able
to write "programs" with more selectivity. He has to hope that Baidu, Google and Co. will find exactly
the pages that meet his requirements. Extracts of these pages are written at the beginning of an
almost infinite result set. What does the user do if he is more interested in a document with the rank
number 100, 1'000 or 100'000? What can a user do, if he has an exact idea of 1'000 desired
documents he is interested in, but he wants only some small sub-documents or sub-tables of each of
them? These questions are not easy to answer and realize. The language o++o (otto) aims to solve
parts of such problems. We summarize the main design principles and requirements for an end-user
computer language or data model with corresponding operations:

1. It should be based on easily applicable concepts with a simple syntax.

2. It should be expressive and powerful.

3. It should be expandable with new operations.

4. It should have precise semantics based on algorithms.

5. It should allow queries on tables (databases) and documents.

6. It should allow queries over document collections (IR systems) and entire databases.

7. It should allow computations by naive (brute force) algorithms.

8. It should also be usable for people with little interest in mathematics and computer science

(programming by gut feeling).

9. It is intended to provide simple as well as more sophisticated concepts for broad classes of

applications, suitable even for users with a keen interest in mathematics and computer

science.

10. It should solidly integrate single data and bulk data operations.

11. The result of a mass data operation should be as small as possible (e.g., no Cartesian product

if possible; highly selective conditions must be present).

12. It would be nice if it could use graphical features based on structured tables.

13. It should be efficiently implementable.

14. At least parts of the language should be able to be optimized.

o++o was designed and developed with these principles in mind. It started as a database language for

tables with repeating groups. A record with repeating groups may contain not only one value at each

position, but also several (sub tuples of) values. For example, a student record may contain a name

and a scholarship, but it may also contain multiple hobbies or multiple (SUBJECT,MARK) pairs.

9

Similarly, a machine part may contain a number and the name of a color, and to that several subparts

or several layers or edges. Such sub-tuples may have sub-tuples again. These repeating groups have

existed in computer science for more than 60 years. They are typical for hierarchical systems

(IMS,...), but were later discredited by emerging relational systems. Even today they are widely used

in XML, JSON and NoSQL systems. However, in our opinion, there is no widely accepted computer

language capable of adequately handling these richer structures. With the advent of XML, we have

been able to generalize our operations to the new capabilities of arbitrary tagging and the alternate

operator (|). Therefore, we are able to manipulate not only tables, but also documents. We have

introduced the name tabment. A tabment can be understood as an abstract (syntax-independent)

specification of an XML document. Step by step we improved our language o++o. We introduced

binary search trees in tabments. Thus, we have achieved great efficiency gains for several operations.

Indices can also be considered as tabments.

Our language o++o is implemented in OCaml. Some basic keywords of o++o are German or French

('gib' instead of SELECT, 'avec' instead of WHERE,...) because they are shorter than the corresponding

English words, but most keywords are English. This seems to be important because smartphones

have only a small screen.

When we consider certain queries, our o++o data model relates to the relational model perhaps like

decimal numbers relate to the Roman system. Roman numerals are more understandable, especially

for small numbers, but calculations are usually more difficult.

The most common argument against an end-user language is: Is the customer paying for a product

for which he still has to learn something?

We think back 100 years:

The car was invented, but most people took the railroad or a horse-drawn carriage if they were rich

enough. It was believed that there would never be more than 1 million cars in the world because

there would be no more than 1 million drivers. No one believed that the average person would one

day get a driver's license and drive a car himself.

Today, many people also believe that no one would buy a computer program that might take a few

hours or days to learn.

We put forward the following arguments against it:

0. Almost all people in the world had to learn for several years to understand the single data

operations addition, multiplication, division and difference for each number range in school.

Are bulk data operations like selections, calculations, restructuring, sorting tables, ... not just

as important?

1. Even if you want to use a word processor like MS Word, you pay for it and need weeks and

months until you master all the possibilities.

2. A good programming language is much easier to learn than German or a foreign language.

Knowledge of a computer language could become part of general education in the future.

3. A good programming language allows many problems to be formulated more briefly and

precisely with fewer misunderstandings than any natural language.

4. There is no need to explain the advantages of someone who has a driver's license or even a

car. If he can even program solutions to problems with the computer himself, this increases

the quality of computer use, because he can also interpret the results better. He does not

need a computer scientist (chauffeur). Thus, there are fewer communication problems and

he saves the cost of the computer scientist and the time for communication.

5. If the individual can make precise queries, he has much more compact query results and

saves a lot of manual search effort. This also reduces the workload and improves quality.

10

What are the more specific design principles of o++o?

1. important things first

1.1 Sorting by the first attributes of a collection

 gib DEPARTMENT,CHIEF,(NAME,LOCATION m) m

Here is described a structured table, which contains for each department also a

corresponding group of employees. Sets (m) (and multi sets) are always sorted by the

first column names. I.e. the outer set is sorted by DEPARTMENT and the inner set by

NAME and then by LOCATION, because the NAME is not always a key in a

department.

1.2 First written - first calculated:

 2+3*4 gives 20

Here, a rectangle has one longer side, which consists of two sections 2 and 3 meters

long. The other side is 4 meters long. The area gives 20.

3*4+2 gives 14

If I have two rectangles, one with side lengths 3 and 4 and one with area 2, I can first

calculate 3*4 and then add 2 to get the area.

1.3 TT-Invariance (TT=TabmentType)

For many operations such as addition or multiplication, the type of the result is the

same as the type of the first input value.

<TABH!

SUBJECT, MARKl m

Math 1 2 4 1

Phy 2 3 5 2 4

!TABH>

*15/6

Here a whole table in horizontal tab format is multiplied by a number. That is, each
number of the table is multiplied by 15/6 and the words remain unchanged. This
results again is a table of the type SUBJECT,MARKl m. The renaming of MARK to
POINTS can be done by the user. I.e. also here the first input value is more important
than the second.

1.4 Exponent representation of numbers
o++o additionally allows a representation where the more important part - the
exponent - precedes the mantissa of a number. The exponent says more about the
size of the number than the mantissa:

6m12.345'678 (12 million 345 thousand ...)
9m123.456 (123 billion 456 million ...)

2. pragmatics and methodology first
We can also allow multi-line semantics for a single term. Then we could

(23+45+67) * (1111+2222+3333+4444)
through

23+45+67
*
1111+2222+3333+4444

replace. This can be typed faster and is also clearer by dedicating a line to each pair of
parentheses. In o++o this notation is further shortened to

23+45+67
* 1111+2222+3333+4444

11

This is not done for methodological reasons (better readability), but for pragmatism. This
notation does not waste the additional middle line. Compared to the first notation, you have
to use a (larger) return key only once instead of 4 brackets.

3. short catchy keywords
Short programs require short keywords and short operation symbols or names. However, if
the number of these symbols becomes too large, one must also allow full names for
designations so that the user can remember them. For o++o, the more important a symbol is,
i.e. the more frequently it is used, the shorter it is. This rule can be better implemented by
allowing non-English words as well.
Very short are + , * ,... m, l This is certainly all right. We have also replaced many English
terms with more memorable and shorter symbols:
sum: ++
product: **
average: ++:
count: ++1
...

Out of gratitude to the Ocaml developers, we have introduced 2 French words for selection:
avec (with), sans (without)
Where we have found very short memorable known words in a language other than English,
we substitute English terms with shorter ones from other languages if those words are
known to many people:
true: si (Spanish Italian)
false: no
From the translation of SELECT-FROM-WHERE (gib-aus-mit) are the German words
gib (select) for "give me"
and
aus (from)
have become.

4. programs are processed from top to bottom and from left to right.
Programs with loops or general recursion are expressive and powerful, but often difficult to
read and understand. Sequential programs are expected to be not so expressive. o++o was
also developed to prove the opposite. This requires powerful and expressive operations.

Example: Is 37 not a prime number?
First, all products up to 100 are calculated:
Xl:=2 ..50 # 49 Generate numbers

Yl:=2 ..10 at X # generate 9 numbers for each X value

PRODUCT:=X*Y # calculate all products

avec PRODUCT <= 100 # select the desired products

gib PRODUCTm # Sort products and eliminate duplicates

ANSWER:= 37 in PRODUCTm # Is 37 a product?

is the comment character.

Readability of programs and tabments is an important problem.
o++o takes this into account as follows:

1. programs can often be written short.
With the above program for the determination of all products some concepts of o++o can be
explained well. If one only wants to know whether 37 is a prime number, this can be
formulated much shorter:
DIVIDERl:= 2 .. 19

gib ANSWER ANSWER:=37 rest DIVIDER = 0 ! ||

12

The program is certainly easy to read, if you have internalized that || is the existential
aggregation and you can use it in the same way as the ++ aggregation.

2. Numbers can also be displayed in Swiss style (e.g.: 12'345'678)
3. lines indented by more than 4 spaces logically belong to the previous line. E.G.:

my_marks.tab

gib AVG,(SUBJECT,AVG m)

 AVG:=MARK! ++: # this line belongs from the logical

 # point of view still to the previous

rnd 1

4. a structured table with the scheme

DEPARTMENT, CHIEF, (NAME, SALARY l) m

contains each department and boss only once. This not only reduces redundancy, but also
improves readability compared to flat tables of this type.

In the chapters it is shown how general and simple the query possibilities of o++o are. Chapter 1
introduces some basic functions of our "pocket calculator". All examples there do not require any
stored tables or documents. This does not mean that our o++o app cannot work with files. Tables and
documents can also be stored on the smartphone.

First of all, the user must understand what a schema is and what are the tables or documents that
belong to this schema. Then it will not be too difficult to grasp the query examples for selection,
calculation and restructuring of the first chapters. All operations allow a compact and readable
formulation of (complex) queries. They apply to nested lists or sets, and they are new to the
database world. Calculations can often be understood as hierarchical "map" functions. Restructuring
with the gib clause is very expressive, as it is combined with sort (m, b), duplicate elimination (m),
aggregation (++, min, max, ++1, ++:, ||, &&, **,variance).

We know of no other restructuring operation in a commercial product that allows to transform a
given hierarchy only by specifying a schema or TT (Tabment Type) of the desired structure. Although
the operations in the examples are only applied sequentially, they cover a wide range of applications.

Section 10.4 introduces a "natural" join operation and its un-nested and nested uses. It becomes
clear that we do not need the Cartesian product and even the ordinary flat relational join. A
simplified notion of recursion is introduced in Chapter 3. With this end-user recursion, appropriate
queries can be realized with minimal learning effort. After showing in Chapter 4 that printing two
words is not just a syntactic issue, Chapter 6 tries to make clear that o++o is useful for all subjects in
school, but especially for mathematics and computer science. It will be made clear that even 9th or
10th grade students can solve problems that are applications of differential and integral calculus. In
addition, it is argued that the ordinary division algorithm could be eliminated from the mathematics
curriculum. The first "end-user join" (igib) (Section 10.5) roughly speaking extends the restructuring
operation to multiple input tables. It requires neither Cartesian product nor (hidden) join conditions.
Then, queries to Wikipedia are introduced in chapter 11. Not only table-oriented queries with
reference to infoboxes are considered, but also document-oriented ones.

Chapter 17 contains some queries where the result can be interpreted as an image. Roughly
speaking, each result table contains the coordinates of points possibly combined with a color value. It
is also shown that it is easier to create structured diagrams based on structured tables.

The most important operations of the data model are described in more detail in chapter 10. Section
10.3 contains the description of the restructuring operation, 10.2 the assignment operation and 10.1
the selection.

13

Acknowledgements:
I would like to thank the following computer scientists for their valuable contributions to our system
o++o and previous systems:

Wolfgang Reichstein for the first one-step implementation of the restructuring operation in C for
HSQ files,

Dmitri Shamshurko for the first implementation of the first core of the "gib-out-with" construct in a
functional style (Caml Light),

Martin Schnabel for the conception and implementation of subroutines and other features,

Andreas Hauptmann for improving many concepts in design and efficiency, especially for query
optimization concepts.

Further thanks go to Stephan Schenkl and Mirko Otto for supporting the o++o project.

Thanks to Eicke Redweik for implementing access to a relational DBMS and to Wikipedia and to Jens
Winter for implementing a first o++o app for Android.

14

1 Calculations and spreadsheet applications with o++o
We first present some numerical calculations.

Program 1.1: Addition Result
1.23 + 4.56 5.79

Program 1.2: Division Result
1:7 0.142857142857

Program 1.3: Division with improved readability Result
1:7 '3 0.142'857'142'857

Program 1.4: Division with rounding Result
1:7 rnd 3 0.143

Program 1.5: Exponentiation Result
3 ^ 20 '3 # or hoch 3'486'784'401

is the comment character. I.e. that "or hoch" does not belong to the program. Comments can be

used to explain programs.

Program 1.6: Addition of rational numbers Result
3/4 + 1/3 13/12

Program 1.7: Type of the first input value is
maintained

Result

3/4 + 0.3 21/20

Program 1.8: Type of the first input value is
maintained

Result

0.3+3/4 1.05

Program 1.9: Difference or list Result
3 - 2 # Note that "3 -2" is a
 # List of two numbers

1

Program 1.10: Sine of pi : 2 Result
pi : 2 sin 1.

Program 1.11: Sine of 30 degrees Result
30:180*pi sin 0.5

Program 1.12: How many 10-digit binary
numbers are there?

Result

15

2 ^ 10 # base:2 exponent: 10 1024

Program 1.13: Calculate the edge length of a
cube with volume 2

Result

2 ^ 1/3 1.25992104989
or

Program 1.14: Calculate the edge length of a
cube with volume 2 using ordinary division
operation

Result

2 ^(1:3) 1.25992104989

Program 1.15: Sum of 4 numbers Result
3.21 4.56 6.88 9.32 ++ 23.97

Program 1.16: Sum of numbers from 1 to 100 Result
1 .. 100 ++ 5050

Program 1.17: Product of the
numbers from 10 to 40

Result

10 .. 40 ** 2248443792019118536005322061276774400000000
You can see from the result that you can process arbitrarily large integers with o++o.

Program 1.18: Maximum of numbers Result
1/3 2/7 max 1/3

Program 1.19: Average of several marks Result
1 3 2 1 3 4 ++: 2.33333333333

Program 1.20: Introduction of two column names
(Output values of two terms simultaneously)

Result

X:=2 ^ 10 # := : Assignment
Y:=X : 10

X, Y
1024 102.4

Program 1.21: a pair of two independent terms Result
2 sqrt; 3 sqrt # ; separates
 # stronger than ,

PZAHL, PZAHL
1.41421356237 1.73205080757

There are few commas in primary data of tables. This would destroy the readability. Therefore, we

do not find commas in .tab files, for example, even if pairs or tuples are represented. However,

pairing is represented in the metadata (table headers) of the tables to prevent misunderstandings.

PZAHL is a number with a point.

Program 1.22: Comma is an ordinary operation:
Calculation from left to right

Result

2 sqrt,3 sqrt # the last sqrt
 # acts both via
 # "2 sqrt" as well
 # as over 3

PZAHL, PZAHL
1.189207115 1.73205080757

16

Program 1.23: divrest generates a pair of
numbers

Result

13 divrest 5 ZAHL,ZAHL
2 3

Program 1.24: create a simple diagram with one click
1 3 2 5 1 # List of numbers
Result: Diagram (columns)

SUBJECT, MARK l
Mathematics 1
Physics 2
English 1
German 2
notes1.tab

The above table represents a list of (SUBJECT,MARK) pairs. It can be created with any text editor or

typed into the output field of the o++o interface. l stands for list.

Program 1.25: a simple bar chart with signatures
notes1.tab

Result (diagram - Säulen)

17

It is also possible to enter the following line into the program field of the Otto interface.

SUBJECT,MARK l:=Mathematics Physics English German,,1 2 1 2

By the operation ,, the both given lists are elementwise connected by comma. The resulting list

consists of 4 (WORT,ZAHL) pairs, where the first column is renamed to SUBJECT and the second to

MARK.

The basic data of the following query can be generated by the following small structured table. Here l

stands for list. It needs the ending tabh, because the marks are arranged horizontally. Lists were

invented in Venice (Lista). The single entries (=elements = rows) of the list were arranged one below

the other. The subjects are also arranged vertically in noten2.tabh. Simple lists were already

arranged horizontally thousands of years ago. A sentence is a list of words, which were essentially

arranged horizontally. Since this saves a lot of screen space and paper, simple (single-column) lists in

o++o can also be arranged horizontally. This is possible because the list is understood abstractly. This

allows o++o to understand JSON lists, for example, even though the list elements are not simply

separated by spaces. In questions of the representation of the elements, sets and multisets are equal

to lists. However, different parentheses are used.

SUBJECT, MARKl m
Mathematics 2 1 3
Physics 2 2 3
English 1 4
marks2.tabh

This table can also be generated by the following program line with set brackets { }:

SUBJECT,MARKl m:={Mathematics,[2 1 3] Physics,[2 2 3] English,[1 4]}

18

Program 1.26: a structured diagram
marks2.tabh
gib AVG,(SUBJECT,AVG,MARKl m)
 AVG:=MARK! ++:

Result (diagram columns)

Result (tabh output)

AVG, (SUBJECT, AVG2, MARKl m)
2.25 English 2.5 1 4
 Mathematics 2. 2 1 3
 Physics 2.333333333 2 2 3

The following are examples of a curve discussion using a parabola as an example.

Program 1.27: Calculation of a small table of
values of the quadratic function with
coefficients 1 -8 13 (x2 - 8 x +13)

Result (tab)

Xl:= -2 .. 10
Y := X poly [1 -8 13]

X, Y l

-2 33
-1 22
 0 13
 1 6
 2 1
 3 -2
 4 -3
 5 -2
 6 1
 7 6

19

 8 13
 9 22
10 33

Program 1.28: Expanding the value table so that
a function graph can be seen.
Draw the graph of the parabola
(quadratic function) with the x-axis and the
function y=x in the interval [-2 10].

Result (image)

Xl:= -2 .. 10! 0.01
Y := X poly 1 -8 13
LINE:= X
Y0:= 0*X

Program 1.29: Approximate determination of the
(local) minimum of the parabola

Result

-2 ... 10!0.0001 poly [1 -8 13] min -3

Program 1.30: Approximate determination of the
two zeros

Result (tab)

Xl:= -2 ... 10!0.0001
Y := X poly [1 -8 13]
avec Y succ * Y <= 0 # succ: successor
rnd 7

X, Y l

2.2679000 0.0001704
5.7320000 -0.0001760

Program 1.31: Determining the area
under a (composite) function

Result (image) (without 2 last program lines)

Xl:= -2 ... 10! 0.0001
Y := (X poly [1 -8 13],0) min

Result (tab)

20

RECTANGLE:= Y*0.0001
++ RECTANGLE

-6.92820323316

If we omit the last two program lines in the following program, the function can be visualized by

clicking on bild:

Program 1.32: Determination of the area under a
non-continuous function

Result (image)

Xl:= -2 ... 10! 0.0001
Y := X poly (1 -8 13),(X rnd 0) min
RECTANGLE:=Y*0.0001
++ RECTANGLE

Result (tab)
21.970089131

Program 1.33: Using the divrest function to output
number pairs

Result (tab)

Xl:=1 ..10
DIV,REST:=X divrest 3

X, DIV,REST l

 1 0 1
 2 0 2
 3 1 0
 4 1 1
 5 1 2
 6 2 0
 7 2 1
 8 2 2
 9 3 0
10 3 1

Program 1.34: Determination of all prime numbers up to 70
Xl:= 2 .. 35
Yl:= 2 .. 9 at X
PRODUCT:= X*Y
avec PRODUCT <= 70 # avec: with
gib PRODUCTm
PRIMl:= 2 ..70
sans PRIM in PRODUCTm # sans: without
gib PRIMl

Result (tabh output):

21

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

Program 1.35: Calculate the circumference of several circles, whose radii are given. The results are
to be rounded to 2 digits after the point.
4 5 6 2 3.7 9.77 *pi*2 rnd 2

Result (tabh)

25.13 31.42 37.7 12.57 23.25 61.39

You can see that this program can be written in one line.

Program 1.36: Calculating circumference and area
of several circles, whose radii are given

Result (tab)

Rl:= 4 5 6 2 3.7 9.77
CIRCUM :=R*pi*2
AREA:=R*R*pi
rnd 1

R, CIRCUM, AREA l

4. 25.1 50.3
5. 31.4 78.5
6. 37.7 113.1
2. 12.6 12.6
3.7 23.2 43.0
9.8 61.4 299.9

By Rl:= the name R (called "tag") is assigned to each element of the given list.

An assignment (":=") adds a new column to the specified table. In the above program, the columns

CIRCUM and AREA are added one after the other, resulting in a table of type R,CIRCUM,AREA l. l

stands for list. Unfortunately, this can easily be confused with the one.

Program 1.37: Calculating perimeter and area of
multiple rectangles

Result (tab)

<TAB!
A, B l
1.23 5.67
7.65 4.32
9.87 6.54
!TAB>
CIRCUM:=A+B*2
AREA:=A*B

A, B, CIRCUM, AREA l

1.23 5.67 13.8 6.9741
7.65 4.32 23.94 33.048
9.87 6.54 32.82 64.5498

The TAB brackets ("<TAB!", "!TAB>") are needed only in the program part of the system. In a file the

system recognizes the type by the ending ".tab". In the TAB representation the values must be

aligned to the left side of the associated column names.

Program 1.38: Total price of a simple invoice Result
<TAB!
ARTICLE, PRICE l
Beer 0.61
Lemonade 0.23
Steak 2.40
!TAB>
++

3.24

Here we simply sum over the numbers in the given table (a list of pairs). The ARTICLE values are

words and therefore have no effect on the result. Now we replace ++ with +% 10. This creates a table

with 2 columns and three rows (records, tuples). Each number now still contains 10% tip:

Program 1.39: Multiplying a table by a number Result

22

<TAB!
ARTICLE, PRICE l
Beer 0.61
Lemonade 0.23
Steak 2.40
!TAB>
+% 10

ARTICLE, PRICE l
Beer 0.671
Lemonade 0.253
Steak 2.64

Then you can add again with ++ to get the total (3.564).

Program 1.40: Find the total price of a more
complicated calculation using a simple table

Result

<TAB!
ARTICLE, PRICE, CNT l
Beer 0.61 7
Lemonade 0.23 3
Steak 2.40 4
!TAB>
POSPRICE:= PRICE*CNT
++ POSPRICE

14.56

As a result of the assignment, the specified table is extended by a new column with the column name

POSPRICE, where each of the three PRICE values is multiplied by the associated CNT value. To

determine the total price, a second input value must be passed to the ++ operation. Otherwise, the

sum of all nine numbers in the table above would be formed. Both lines of the program can also be

replaced by:

++ PRICE * CNT

The first input value of an operation, which is at the beginning of a program line, is always the result

of the previous program line.

The ":=" character of the assignment is to be distinguished from the equal sign =. For the formulation

of conditions the equal sign, as well as <, >, <=, "in" etc. is needed. Conditions are used for selection

(filtering of (complex) rows of structured tables).

For example, add a condition

avec ARTICLE = beer

or only

avec beer

then the final result is the total price for the seven beers. If you want to calculate only the price for

the other items instead, use

sans ARTICLE = beer

or simply

sans beer.

Column names (metadata) must always be written in upper case. The keywords (gib, sans, avec, ...)

must always be written in lower case. If you write a word of the primary data always with upper and

lower case letters, the program becomes easier to read.

The reference to the aggregation (here ++) results from the header line of the desired table. TOTAL is

an aggregation per NAME. Sets (m, m-) are always sorted by the column names specified first.

Program 1.41: Find a weighted average for 3
students and the overall average

Result (tabh)

<TABH! TOTAL,(NAME, TOT, EXAMl,MARKl l)

23

NAME, EXAMl,MARKl l
Ernst 1 2 1 2 3 1 3 1 1
Clara 1 1 3
Sophia 1 3 1
!TABH>
TOT:=EXAMl ++: *0.6 +(MARKl ++: *0.4)
TOTAL:=TOTl ++:
rnd 2

1.66 Ernst 1.59 1 2 1 2 3 1 3 1 1
 Clara 1.8 1 1 3
 Sophia 1.6 1 3 1

Program 1.42: A woman weighs 40 kg plus half her
weight. How much does she weigh?

Result

WEIGHTl:= 40 .. 100
avec WEIGHT:2+40=WEIGHT

80

Program 1.43: A bottle with a cork costs one euro and ten
cents. The bottle is one euro more expensive than the cork.
How much does the bottle cost?

Result

BOTTLEl := 0 .. 110
avec 110-BOTTLE=BOTTLE- 100 # = CORK

BOTTLE
105

Program 1.44: A bottle with a cork costs one euro and ten
cents. The bottle is one euro more expensive than the cork.
How much does the cork cost?

Result

BOTTLEl:= 0 .. 110
CORK:= BOTTLE - 100
avec CORK+BOTTLE = 110

BOTTLE, CORK l
105 5

The first assignment gives each of the numbers
from 0 to 110 the tag BOTTLE. This is best seen by
looking at the ment representation:

If we had written the assignment
BOTTLE:= 0 ..110, the BOTTLE tag would appear
only once:

<TABM>
 <BOTTLE>0</BOTTLE>
 <BOTTLE>1</BOTTLE>
 <BOTTLE>2</BOTTLE>
 <BOTTLE>3</BOTTLE>
 ...
 <BOTTLE>108</BOTTLE>
 <BOTTLE>109</BOTTLE>
 <BOTTLE>110</BOTTLE>
</TABM>

<BOTTLE>
0
1
2
3
...
108
109
110
</BOTTLE>

Program 1.45: A bottle with a cork costs one euro
and ten cents. The bottle is one euro more
expensive than the cork. How much does the
bottle cost?

Result

BOTTLE:= 0 ..110
CORK1 := BOTTLE - 100
CORK2 := 110 - BOTTLE
avec CORK1=CORK2

BOTTLE, CORK1, CORK2 l
105 5 5

24

This solution is advantageous from a methodical point of view, because the first 3 program lines can

be displayed by clicking on the image button. You can see that there are 2 straight lines whose

intersection is determined by the conditions. You can also click diagram/Balken to get the following

result, where it is visible that both bars are equal at 105. Here we had to add the program line:

BOTTLE::=BOTTLE wort

25

26

2 A savings bank account
The following requests refer to data records of the savings bank. Here the customer can download

his data as a csv file. csv files have a very simple structure. Since they contain a lot of quotation

marks, they are relatively difficult to read. The otto user does not need to familiarize himself with

this syntax. He can view them or parts of the file in the usual way as tab, hsq, ment, web or json files.

We consider a file turnover.csv, which contains transactions from 3 years.

Program 2.1: How many turnovers are there? Result
turnover.csv
++1

162

Program 2.2: Give the first columns of the first and last transaction!
turnover.csv
avec AMOUNT pos=1 | AMOUNT pos- =1

Result (tab output):

ORDERACCOUNT, POSTINGDATE,VALUEDATE,POSTINGTEXT, USAGE....

DE598105327206411 20.07.22 20.07.22 ONLINE REFERRAL ReNr2
DE598105327206411 13.05.20 13.05.20 ONLINE REFERRAL Wage
pos determines the position of a tuple. pos starts counting from the beginning with 1 and pos- from

the end. "|" is the logical or sign.

Program 2.3: How much money was transferred to
the account?

Result

turnover.csv
avec AMOUNT > 0
++ AMOUNT
'3

110'729.17

Program 2.4: How much money was transferred
from the account?

Result

turnover.csv
avec AMOUNT < 0
++ AMOUNT
'3

-94'713.65

Program 2.5: Contrast total revenues and
expenditures

Result (tab)

turnover.csv
gib INCOME,EXPENSES
 INCOME:= AMOUNT if AMOUNT > 0!++
 EXPENSES:= AMOUNT if AMOUNT< 0!++
'3

INCOME , EXPENSES

110'729.17 -94'713.65

Program 2.6: How much was transferred
to Ms. Heyer in total?

Result

turnover.csv
avec Heyer

-54'538.28

27

++ AMOUNT
'3

Here the user must know his data. If there are two Heyer's, the above result is certainly not the

desired one. One could then add the first name:

avec Heyer Erika

or

avec Heyer & Erika

You can also use the account number, but then the program is not so well readable, because most

people cannot remember an account number or IBAN.

Program 2.7: How much was transferred to
Ms. Heyer in each year and month?

Result (tab)

turnover.csv
avec Heyer
D,MONTH,YEAR:=VALUTADATUM zahltrip
gib YEAR,SUM,(MONTH,SUM m) m
 SUM:=AMOUNT ! ++
'3

rnd 2

YEAR, SUM , (MONTH, SUM2 m)m
20 -16'807.22 5 -1'967.66
 6 -1'777.31
 7 -1'943.89
 8 -2'110.27
 9 -1'833.69
 10 -3'189.39
 11 -1'973.48
 12 -2'011.53
21 -20'727.13 1 -2'011.53
 2 -1'911.90
 3 -2'006.17
 4 -2'443.65
 5 -2'438.02
 6 -583.32
 8 -812.47
 9 -2'636.73
 10 -993.13
 11 -2'635.68
 12 -2'254.53
22 -17'003.93 1 -1'630.30
 2 -2'202.03
 3 -1'324.38
 4 -1'438.72
 5 -4'460.36
 6 -2'999.59
 7 -2'948.55

Program 2.8: Give a comparison of the income and expenses for each year!
turnover.csv
YEAR:=20 wort + (VALUTADATUM subtext 7!2)
gib YEAR,PLUS,MINU,SUM m
 PLUS:=AMOUNT if AMOUNT>0!++
 MINU:=AMOUNT if AMOUNT<0!++
 SUM:=AMOUNT!++
'3

28

Result (tab output):

YEAR, PLUS , MINU , SUM m

2020 24'921. -23'257.11 1'663.89
2021 50'468.04 -34'274.22 16'193.82
2022 35'340.13 -37'182.32 -1'842.19

subtext needs 3 input values. Here VALUTADATUM is the first, the initial character number 7 the

second and the length of the desired string 2 the third. VALUTADATUM is here a word constructed in

German date notation, e.g.: 18.06.21. In the above example, however, the year is to be output with 4

digits. For this, the word "20" must be concatenated with the two digits that subtext determines.

Program 2.9: Give me for each month of the year 2021 the income and expenses with the larger
transfers!
turnover.csv
avec VALUTADATUM subtext 7!2 = 21
MONTH:=VALUTADATUM nthzahl 2
USE:=VERWENDUNGSZWECK subtext 3!6
RECIPIENT:=BEGUENSTIGTER_ZAHLUNGSPFLICHTIGER subtext 3!6
gib MONTH,PLUS,MINU,(AMOUNT,USE,RECIPIENT b-) m
 PLUS:=AMOUNT if AMOUNT>0 ! ++
 MINU:=AMOUNT if AMOUNT<0 ! ++
'3
avec AMOUNT! AMOUNT abs>2'000
rnd 2

Result (hsq output):

MONTH,PLUS,MINU,(BETRAG,USE,RECIPIENT b-) m

MONTH PLUS MINU

 AMOUNT USE RECIPIENT

01 0 -3'536.75

02 18'391.40 -1'922.80

 11'119.40 SZAHLU vestit

 7'272.00 SZAHLU vestit

03 0 -2'969.82

04 0 -3'238.44

05 0 -3'572.81

06 3'513.33 -2'417.52

 3'513.33 /2018/ vestit

07 279.37 -2'001.98

08 410.68 -2'258.82

09 0 -3'932.65

10 27'527.11 -1'152.42

 17'413.36 971240 vestit

 10'113.75 971240 vestit

11 0 -2'764.63

12 346.15 -4'505.58

For reasons of presentability, corresponding data of the recipient and the purpose of use have been
shortened.
If the last line were replaced by

29

avec AMOUNT abs > 2'000
replace, only the data for months 2, 6 and 10 would remain, since the others do not contain any
major transactions (over 2,000 euros).

Program 2.10: Output the account balances of 2021 as a bar chart output!
turnover.csv
rename VALUTADATUM!DATE
avec DATE subtext 7!2=21
gib DATE,BETRAG l-
BALANCE:= 5'200 +BETRAG for BALANCE pred +BETRAG at BETRAG
gib DATE,BALANCE l

Result (bar chart):

Here it is assumed that the initial account balance is 5'200. This number is simply added to the first
AMOUNT (BETRAG) value in the above example.

The query possibilities of an account file and other files depend on the existing data. If, for example,
no name for the recipient is given in the purpose of use of the data records, it is not possible to write
well readable queries. The better the data material, the simpler the o++o programs become and the
more queries are possible. But this also makes clear that the one who knows the input data can write
the best o++o programs. A computer scientist, who wants to program general evaluations of such
data, will never be able to make the variety possible, which an end user reaches, who knows the
contents of the records exactly. The intended use alone offers many possibilities to improve the
evaluations, which are certainly not yet exhausted by many.

The importance of a simple query language will be magnified when money transactions in Germany
are also completely cashless. If everyone has access to the data on their purchases at a supermarket
or gas station, they will be able to determine exactly when and on what they spent their money.

30

3 Table Recursion - Exponential Growth
Recursion is a powerful tool to describe functions or data structures in a short form. It is especially
used in functional languages like OCaml or HASKEL. We introduce a type of "forward recursion" that
is easy to use. An initial value is always described by a value or a term and the following values result
from the direct predecessor by means of a second term, respectively. All generated values are visible
in the result table.
In this way one can describe exponential growth. EXP9 and EXP1 are the program lines for this. At the
same time, these two columns in the tab representation contain the growth values. One percent
growth is exponential growth if compound interest is taken into account. This is given in both
formulas. If one adds in each case only 9% or 1% of 100 to the predecessor, then the interest of the
interest is not considered. This would be the growth if one takes the interest from the interest every
year. Our formulas for LIN9 and LIN1 correspond to this. These straight-line formulas and the
exponential function curves differ here only at one point. If the operation + is replaced by +%, linear
growth becomes exponential.
As is well known, exponential growth is far superior to any other growth and thus especially to linear
growth. The fact that nine percent interest yields a far better total amount after 20 years than one
percent is shown by the last line of the table (€560 versus €122). Without compound interest, the
results are €280 and €120, respectively. To better compare with polynomial growth, we have
included a parabola.
The green parabola obviously shows a similar behavior in this range of 20 years as the exponential
growth of 9 percent (dark red). In the next example we will see that this changes completely if we
look at 200 years instead of 20. The yellow curve (1 % without compound interest) and the red curve
(exponential growth 1 %) practically did not differ at all.
It should already be mentioned here that the curves are "distorted" so that they look nicer. In school,
LIN1 would have to be drawn with an angle of 45°. LIN9 would be almost vertical with an angle of
more than 83°. If you did that, the values of the fast-growing functions would have no place on the
paper or screen, or you would have to shorten the x-axis (here YEAR) accordingly. But then it would
look as if all points and curves were vertical. This undistorted real representation of the points is
realized by the output 'bild'. This doesn't look nice, but people should be confronted with reality
from time to time. Then they can also better classify the visualizations below.

Program 3.1: How does an amount of 100 Euro develop with a "simple" and normal interest rate of
1% and 9%? and with quadratic growth within 20 years.
YEARl:= 0 .. 20
EXP9 := 100. for EXP9 pred +% 9 at YEAR
EXP1 := 100. for EXP1 pred +% 1 at EXP9
PAR := YEAR * YEAR + 100
LIN9 := 100. for LIN9 pred + 9 at PAR
LIN1 := 100. for LIN1 pred + 1 at LIN9
rnd 0
YEAR::=YEAR wort
RGBDARKRED :=darkred leftat EXP9
RGBRED :=red leftat EXP1
RGBGREEN :=green leftat PAR
RGBORANGE :=orange leftat LIN9
RGBYELLOW :=yellow leftat LIN1
Result (line graph):

31

Result (tab output):

YEAR,EXP9,EXP1,PAR,LIN9,LIN1 l
 0 100. 100. 100 100. 100.
 1 109. 101. 101 109. 101.
 2 119. 102. 104 118. 102.
 3 130. 103. 109 127. 103.
 4 141. 104. 116 136. 104.
 5 154. 105. 125 145. 105.
 6 168. 106. 136 154. 106.
 7 183. 107. 149 163. 107.
 8 199. 108. 164 172. 108.
 9 217. 109. 181 181. 109.
 10 237. 110. 200 190. 110.
 11 258. 112. 221 199. 111.
 12 281. 113. 244 208. 112.
 13 307. 114. 269 217. 113.
 14 334. 115. 296 226. 114.
 15 364. 116. 325 235. 115.
 16 397. 117. 356 244. 116.
 17 433. 118. 389 253. 117.
 18 472. 120. 424 262. 118.
 19 514. 121. 461 271. 119.
 20 560. 122. 500 280. 120.

The new column EXP9 is defined by two formulas. The first element of the list of years is
assigned the value of the first formula. The second value is calculated by the second formula,
where "EXP9 pred" is the value of the predecessor. Therefore, we get 100 +% 9=109 for the
second value. The third value is again calculated by the second formula, but now we have to

32

calculate 109 +% 9=118.81 (rounded to 119). In the same way, all the following values are
calculated value by value using the second formula. The rounding does not cause any
inaccuracies, because it is done after all calculations.

Program 3.2: How does an amount of 100 Euro develop with a "simple" and normal interest rate of
1 % and 9 % and with quadratic growth within 200 years.
YEARl := 0 .. 200
#EXP9 := 100. for EXP9 pred +% 9 at YEAR
EXP1 := 100. for EXP1 pred +% 1 at YEAR #EXP9
PAR := YEAR * YEAR + 100
LIN9 := 100. for LIN9 pred + 9 at PAR
LIN1 := 100. for LIN1 pred + 1 at LIN9
rnd 0
#avec YEAR rest 10 = 0 this condition was applied to reduce the volume of
#tab output.
YEAR::=YEAR wort
'3
#RGBDARKRED :=darkred leftat EXP9
RGBRED :=red leftat EXP1
RGBGREEN :=green leftat PAR
RGBORANGE :=orange leftat LIN9
RGBYELLOW :=yellow leftat LIN1
Result (line chart without EXP9)

Result (line chart with EXPO9)

33

Result (tab output):

YEAR ,EXP9 ,EXP1 ,PAR ,LIN9 ,LIN1 l

0 100. 100. 100 100. 100.
10 237. 110. 200 190. 110.
20 560. 122. 500 280. 120.
30 1'327. 135. 1'000 370. 130.
40 3'141. 149. 1'700 460. 140.
50 7'436. 164. 2'600 550. 150.
60 17'603. 182. 3'700 640. 160.
70 41'673. 201. 5'000 730. 170.
80 98'655. 222. 6'500 820. 180.
90 233'553. 245. 8'200 910. 190.
100 552'904. 270. 10'100 1'000. 200.
110 1'308'925. 299. 12'200 1'090. 210.
120 3'098'702. 330. 14'500 1'180. 220.
130 7'335'754. 365. 17'000 1'270. 230.
140 17'366'396. 403. 19'700 1'360. 240.
150 41'112'576. 445. 22'600 1'450. 250.
160 97'328'419. 491. 25'700 1'540. 260.
170 230'411'765. 543. 29'000 1'630. 270.
180 545'468'442. 600. 32'500 1'720. 280.
190 1'291'322'174. 662. 36'200 1'810. 290.
200 3'057'029'208. 732. 40'100 1'900. 300.

34

The green parabola is not visible in the second image. The points are behind the other non-dark red
points. Therefore, the parabola looks like a straight line here. The straight line turns into a fast-
growing curve when the even faster growing dark red exponential curve is taken out of the picture.
This can only be understood by comparing the scalings of the ordinates (Y-axes).

Program 3.3: The chess board problem: Place a grain of wheat on the first square, two on the second,
4 on the third, then eight, and so on. This exponential growth is compared with the polynomial X8 .
Xl := 1 .. 64
FIELD := 1 for FIELD pred *2 at X
HIGH8 := X ^ 8
FIELD::= FIELD if X<30 ! (FIELD div 1'000'000)
HIGH8::= HIGH8 if X<30 ! (HIGH8 div 1'000'000)
'3
Result (tab):

X ,FIELD ,HIGH8 l
 1 1 1
 2 2 256
 3 4 6'561
 4 8 65'536
 5 16 390'625
 6 32 1'679'616
 7 64 5'764'801
 8 128 16'777'216
 9 256 43'046'721
10 512 100'000'000
11 1'024 214'358'881
12 2'048 429'981'696
13 4'096 815'730'721
14 8'192 1'475'789'056
15 16'384 2'562'890'625
16 32'768 4'294'967'296
17 65'536 6'975'757'441
18 131'072 11'019'960'576
19 262'144 16'983'563'041
20 524'288 25'600'000'000
21 1'048'576 37'822'859'361
22 2'097'152 54'875'873'536
23 4'194'304 78'310'985'281
24 8'388'608 110'075'314'176
25 16'777'216 152'587'890'625
26 33'554'432 208'827'064'576
27 67'108'864 282'429'536'481
28 134'217'728 377'801'998'336
29 268'435'456 500'246'412'961
30 536 656'100
31 1'073 852'891
32 2'147 1'099'511
33 4'294 1'406'408
34 8'589 1'785'793
35 17'179 2'251'875
36 34'359 2'821'109

35

37 68'719 3'512'479
38 137'438 4'347'792
39 274'877 5'352'009
40 549'755 6'553'600
41 1'099'511 7'984'925
42 2'199'023 9'682'651
43 4'398'046 11'688'200
44 8'796'093 14'048'223
45 17'592'186 16'815'125
46 35'184'372 20'047'612
47 70'368'744 23'811'286
48 140'737'488 28'179'280
49 281'474'976 33'232'930
50 562'949'953 39'062'500
51 1'125'899'906 45'767'944
52 2'251'799'813 53'459'728
53 4'503'599'627 62'259'690
54 9'007'199'254 72'301'961
55 18'014'398'509 83'733'937
56 36'028'797'018 96'717'311
57 72'057'594'037 111'429'157
58 144'115'188'075 128'063'081
59 288'230'376'151 146'830'437
60 576'460'752'303 167'961'600
61 1'152'921'504'606 191'707'312
62 2'305'843'009'213 218'340'105
63 4'611'686'018'427 248'155'780
64 9'223'372'036'854 281'474'976
You can see that the polynomial on the sixth field has already exceeded the million, but the
exponential function is only at 32. In the last line, on the other hand, it becomes clear that the
exponential function is larger than the polynomial value by a factor of about 10'000. From position
30 we omitted the last 6 digits to improve the comparability of such large numbers.

Program 3.4: Calculate the total growth of the gross domestic product in West Germany, East
Germany, and China in the years from 1992 to 2014 using the growth data given.
<TAB!
YEAR, WGER, EGER, CHIN l
1988 0. 0. 0.
1989 3.9 1.85 4.2
1991 11.09 -47.8 13.56
1992 1.7 6.2 14.3
1993 -2.6 8.7 13.9
1994 1.4 8.1 13.1
1995 1.4 3.5 11.
1996 0.6 1.6 9.9
1997 1.5 0.5 9.2
1998 2.3 0.2 7.8
1999 2.1 1.8 7.6
2000 3.1 1.2 8.4
2001 1.1 -0.6 8.3
2002 0.1 0.2 9.1
2003 -0.1 -0.3 10.

36

2004 1.6 1.3 10.1
2005 0.8 -0.2 11.3
2006 3.8 3.4 12.7
2007 3.3 2.9 14.2
2008 1. 0.6 9.6
2009 -6.1 -3.9 9.2
2010 4.3 3.2 10.6
2011 3.8 1.9 9.5
2012 0.4 0.6 7.7
2013 0.1 -0.1 7.7
2014 1.6 1.4 7.4
!TAB>
avec YEAR>1991
WGERM:= 100. for WGERM pred +% WGER at CHIN
EGERM:= 100. for EGERM pred +% EGER at WGER
CHINA:= 100. for CHINA pred +% CHIN at EGERM
rnd 1
avec YEAR>1991
gib YEAR,EGERM,WGERM,CHINA l
Result (tab output):

YEAR ,EGERM ,WGERM ,CHINA l
1992 100.0 100.0 100.0
1993 108.7 97.4 113.9
1994 117.5 98.8 128.8
1995 121.6 100.1 143.0
1996 123.6 100.7 157.1
1997 124.2 102.3 171.6
1998 124.4 104.6 185.0
1999 126.7 106.8 199.0
2000 128.2 110.1 215.8
2001 127.4 111.3 233.7
2002 127.7 111.4 254.9
2003 127.3 111.3 280.4
2004 128.9 113.1 308.8
2005 128.7 114.0 343.7
2006 133.1 118.3 387.3
2007 136.9 122.3 442.3
2008 137.7 123.5 484.8
2009 132.4 115.9 529.3
2010 136.6 120.9 585.5
2011 139.2 125.5 641.1
2012 140.0 126.0 690.4
2013 139.9 126.2 743.6
2014 141.9 128.2 798.6

With a total growth of 100 to 142, East Germany is clearly better in this time interval than West
Germany with a growth of 100 to 128. Now let the condition YEAR>1991 be dropped. Furthermore,
we assume that the above data enclosed in HSQ brackets are in the file growth.tab.

Program 3.4: Calculate the growth of the gross domestic product in East Germany, West

Germany and China in the years 1988 to 2014 with the indicated growth.
growth.tab
TITLE :="Red:EastGermany Black:WestGermany Yellow:China"
WGERM := 100. for WGERM pred +% WGER at CHIN

37

EGERM := 100. for ODE pred +% EGER at WGERM
CHINA := 100. for CHINA pred +% CWA at EGERM
rnd 1
YEAR::= YEAR wort subtext 3!2
gib TITLE,(YEAR,EGERM,WGERM,CHINA l)
RGB:=red leftat EGERM
RGB:=black leftat WGERM
RGB:=yellow leftat CHINA
Result (bar chart):

Result excluding China (bar chart):

38

Result (tab output):

TITEL ,(YEAR ,RGB ,EGERM ,RGB ,WGERM ,RGB ,CHINA l)
Red:EastG... 88 1.,0.,0. 100.0 0.,0.,0. 100.0 1.,1.,0. 100.0
 89 1.,0.,0. 101.9 0.,0.,0. 103.9 1.,1.,0. 104.2
 91 1.,0.,0. 53.2 0.,0.,0. 115.4 1.,1.,0. 118.3
 92 1.,0.,0. 56.5 0.,0.,0. 117.4 1.,1.,0. 135.3
 93 1.,0.,0. 61.4 0.,0.,0. 114.3 1.,1.,0. 154.1
 94 1.,0.,0. 66.3 0.,0.,0. 115.9 1.,1.,0. 174.2
 95 1.,0.,0. 68.7 0.,0.,0. 117.6 1.,1.,0. 193.4
 96 1.,0.,0. 69.8 0.,0.,0. 118.3 1.,1.,0. 212.5
 97 1.,0.,0. 70.1 0.,0.,0. 120.0 1.,1.,0. 232.1
 98 1.,0.,0. 70.3 0.,0.,0. 122.8 1.,1.,0. 250.2
 99 1.,0.,0. 71.5 0.,0.,0. 125.4 1.,1.,0. 269.2
 00 1.,0.,0. 72.4 0.,0.,0. 129.3 1.,1.,0. 291.8
 01 1.,0.,0. 71.9 0.,0.,0. 130.7 1.,1.,0. 316.1
 02 1.,0.,0. 72.1 0.,0.,0. 130.8 1.,1.,0. 344.8
 03 1.,0.,0. 71.9 0.,0.,0. 130.7 1.,1.,0. 379.3
 04 1.,0.,0. 72.8 0.,0.,0. 132.8 1.,1.,0. 417.6
 05 1.,0.,0. 72.7 0.,0.,0. 133.8 1.,1.,0. 464.8
 06 1.,0.,0. 75.1 0.,0.,0. 138.9 1.,1.,0. 523.8
 07 1.,0.,0. 77.3 0.,0.,0. 143.5 1.,1.,0. 598.2
 08 1.,0.,0. 77.8 0.,0.,0. 144.9 1.,1.,0. 655.6
 09 1.,0.,0. 74.7 0.,0.,0. 136.1 1.,1.,0. 715.9
 10 1.,0.,0. 77.1 0.,0.,0. 142.0 1.,1.,0. 791.8
 11 1.,0.,0. 78.6 0.,0.,0. 147.3 1.,1.,0. 867.1
 12 1.,0.,0. 79.1 0.,0.,0. 147.9 1.,1.,0. 933.8
 13 1.,0.,0. 79.0 0.,0.,0. 148.1 1.,1.,0. 1005.7
 14 1.,0.,0. 80.1 0.,0.,0. 150.5 1.,1.,0. 1080.2

We have hidden China in the second chart so that it is easier to see Germany's two growth data. For
example, East Germany produces less than in GDR times. The banking crisis had a major negative
impact on the East German economy, even though East Germany does not have a bank, Too
much information can obscure what seems to be essential.

39

4 Hello otto - gimmick
Program 4.1: Output two words out.
Hello otto
Result (tabh)
WORTl
Hello otto

Program 4.2: Give a pair of two words from.
Hello, otto
Result (tab)
WORT, WORT
Hello otto

Program 4.3: Output a text with spaces.
"Hello Otto"
Result (tab)
TEXT
Hello otto

Program 4.4: Concatenate two words with spaces.
Hello + " " + otto

Result (tab)
TEXT

Hello otto

Program 4.5: Give a greeting with a list of two words.
GREETING := Hello otto

Result (ment)

TABMENT! GREETING
GREETING! WORTl

<GREETING>
Hello
otto
</GRUSS>

Program 4.6: Output two words each with its own column name.

DEAR:=Hello
GREETING:=otto

Result (tab)

DEAR, GREETING
Hello otto

Program 4.7: Output two words with one column name.

GREETING:= "Hello otto"

Result (tabh)

GREETING

Hello otto

40

Program 4.8: Sort a set of words.

GREETING:= {otto Hello}

Result (tabh)

TABMENT! GREETING
GREETING! WORTl
GREETING
Hello otto

Program 4.9: Represent one word by metadata and the other by primary data.

HELLO := otto

Result (tab)

HELLO
otto

41

5 o++o for kindergarten?
The stroke list is historically the first representation of a number. It could already be a million years
old. Notched wood has been shown to be 150 thousand years old. Concepts first developed in history
are usually simpler than later concepts. That's why tally charts should have a broader scope even in
kindergarten.
The following goals could be pursued with the use of o++o in kindergarten:

1. By presenting decimal numbers and stroke lists at the same time, a child can better
appreciate the magnitude of numbers. For example, the number one hundred differs from
the number ten only by one digit zero. The corresponding stroke lists, however, differ
considerably.

2. The operation symbols + * - : could be taught. They are probably easier to explain on stroke
lists. The stroke lists could be converted to decimals and vice versa.

3. The algorithm behind the stroke list operation (gib statement) could be taught using
appropriate examples.

4. Can preschool children formulate appropriate o++o programs? Here one should imagine that
an app is developed that replaces letters or words with pictures.

5.1 Stroke Lists
Counting animals of different species could give the following small intermediate table:

Elephant | | | |
Deer | |
Pig | | |

If another deer comes, a stroke is added to the second line. If, on the other hand, a turkey comes, a

new line must be added with the name turkey and a stroke at the end.

This already poses many problems, although preschoolers can already create such a table if the

words have been replaced by pictures or single letters. It is not clear how many columns this table

has if only "normal" tables are considered. If we allow structured tables, we can say that this table

contains a column ANIMAL and a column STROKE, but the values of the column STROKE can be

"repeated" for each animal. An associated schema ANIMAL,STROKEl m or

ANIMAL,STROKEl l would express this. Where l is an abbreviation for list and m stands for set.

These symbols are again used postfix, i.e. they are placed after. The m is necessary in a gib part so

that each animal appears only once in the target table.

Since many children are interested in cars, one could count cars analogously to counting animals.

This could result in the following table:

Golf | | | |
A6 | | |
Polo | | | | |
Wartburg | | |
A8 | |

Is it possible in kindergarten to increase the structural depth of the table when counting? Then the

following (hsqh-) table could have been created:

VW | | | | | | | | |
 Golf | | | |
 Polo | | | | |

42

Audi | | |
 A6 | | |
 A8 | |
IFA | | |
 Wartburg | | |

5.2 The conversion operations zahl and |l
As a dash (stroke) o++o uses the | (or) character. Several such characters must be enclosed in square

brackets on input so that they are interpreted by o++o as a list of strokes. We will illustrate the

operations in the following text with self-explanatory examples.

Program 5.2.1: Stroke list to number Result
 [| | |] zahl 3

Convert a number into a list of strokes:

Program 5.2.2: Number to tally list Result
 4 |l | | | |

5.3 The operations + *
Different representations of an addition task. The first input type again determines the output type.

Programs 5.3.1: Four plus four Results
 4 + 4 8

 4 + [| | | |] 8

 [| | | |] + [| | | |] | | | | | | | |

 [| | | |] + 4 | | | | | | | |

 4 + 4 |l | | | | | | | |

Different representations of a multiplication task:

Programs 5.3.2: Ten times ten Results
 10 * 10 100

Xl:= 1 ..10
Yl:= | *l 10 at X

 1 | | | | | | | | | |
 2 | | | | | | | | | |
 3 | | | | | | | | | |
 4 | | | | | | | | | |
 5 | | | | | | | | | |
 6 | | | | | | | | | |
 7 | | | | | | | | | |
 8 | | | | | | | | | |
 9 | | | | | | | | | |
10 | | | | | | | | | |

10 * 10 |l
++text
cut 10

43

Programs 5.3.3: Two representations of a
subtraction task

Result

 10 - 5 5

 [| | | | | | | | | |] - 5 | | | | |

Program 5.3.4: Place next to each number smaller
than 16 the corresponding stroke list

Result

Xl:=0 ..15
Y :=X |l

 X,Y l
 0
 1 |
 2 | |
 3 | | |
 4 | | | |
 5 | | | | |
 6 | | | | | |
 7 | | | | | | |
 8 | | | | | | | |
 9 | | | | | | | | |
10 | | | | | | | | | |
11 | | | | | | | | | | |
12 | | | | | | | | | | | |
13 | | | | | | | | | | | | |
14 | | | | | | | | | | | | | |
15 | | | | | | | | | | | | | | |

5.4 o++o programs to kindergarten?
Which of the following programs are useful for understanding and which are teachable? When is a
syntax too incomprehensible? These questions are outlined below.
Multiplication is counting the number of strokes in a rectangle?

Program 5.4.1: Each of four children gets 3 apples.
How many apples are there in total ?

Result (tabh)

NAMEl := Ernst Clara Sophia Claudia
APPLEl:= [| | |] at NAME
++

Intermediate result after the first 2 lines
NAME, APPLE l
Ernst | | |
Clara | | |
Sophia | | |
Claudia | | |
Final result (++ stands for many additions)
12

The last line can also be replaced and you get the same result.

Program 5.4.2: Each of four children gets 3 apples.
How many apples are there in total?

Result (tabh)

NAMEl := Ernst Clara Sophia Claudia
APPLEl:= [| | |] at NAME
gib APPLEl
++1

Intermediate result after the first 2 lines
NAME, APPLE l
Ernst | | |
Clara | | |
Sophia | | |

44

Claudia | | |
Final result (++1 counts)
12

Program 5.4.3: Counting different kinds of animals
ANIMAL:=elephant deer elephant pig elephant deer pig pig elephant
gib ANIMAL,CNT m CNT:=ANIMAL!++|

Result (tabh output):

ANIMAL, CNT l
Elephant | | | |
Deer | |
Pig | | |

Program 5.4.4: Counting cars
<TAB!
BRAND,COLOR, TYPE, WEIGHT l
VW Blue Polo 1250
IFA Papyrus 500 580
VW Blue Golf 1450
Audi Yellow Quatro 2070
VW Blue Polo 1380
IFA Beige 601 620
VW Red Golf 1400
Audi Red Quatro 2100
IFA Beige 601 620
VW Beige Polo 1300
!TAB>
gib BRAND,CNT,(COLOR,CNT m) m

 CNT:=TYPE ! ++|

Result (tabh)

BRAND,CNT, (COLOR, CNT2 l) l
Audi | | Yellow |
 Red |
IFA | | | Beige | |
 Papyrus |
VW | | | | | Beige |
 Blue | | |
 Red |

Programs 5.4.5: 3 Division Operations Results
13 div 4 3

13 : 4 3.25

13 divrest 4 3,1

All these operations seem too complicated for kindergarten.
If one calculates not only with numbers but also with tables, one could introduce new division

operations. However, this cannot be discussed to the end at this point.

Program 5.4.6: Problem: Distribute 15 apples
among 4 children. Who designs the o++o program?

Result (tabh)

45

 Ernst | | | |
Clara | | | |
Sophia | | | |
Claudia | | |

Another very important operation of digitization is selection. Would a database operation like

selection be teachable to some degree?

given:

NAME, AGE l
Ernst 8
Clara 6
Sophia 6
Claudia 4
Ulrike 5
Käthe 4
myfamily.tab

Program 5.4.7: How old is Claudia? Result
aus myfamily.tab
avec Claudia

NAME, AGE l

Claudia 4

avec is French and means with

Program 5.4.8: All 6 year old children are
wanted

Result

aus myfamily.tab
avec AGE = 6

NAME, AGE l

Clara 6
Sophia 6

Program 5.4.9: All children younger than 6 are
wanted

Result

myfamily.tab
avec AGE < 6

NAME, AGE l

Claudia 4
Ulrike 5
Käthe 4

46

6 o++o in School Lessons
There are many possible applications for o++o in school. Especially in the subjects mathematics and

computer science. But also in all other subjects o++o can be used to extract data from given tables,

documents or from Wikipedia (see: chapter 11). We do not want to present all possible typical query

examples here. We want to limit ourselves to the so-called "brute force algorithms" for mathematics.

These are the simplest, i.e., the methodologically best. Since all these algorithms are implemented in

main memory, we need not worry about efficiency. Now we start with a simple algorithm. We hope

that it is the simplest program for a zero. The section ends with programs for grading students and

considerations that may be important for kindergarten.

Program 6.1: Calculate in a simple way the zero of the
sine function in the interval [3, 4].

Result

Xl:= 3 ... 4! 0.00001
avec X sin <0
avec X pos =1

Xl

3.1416

Program 6.2: Calculate in a simple way the zero of the
sine function in the interval [3, 4].

Result

Xl:= 3 ... 4! 0.00001
avec X sin * (X +0.00001 sin) <=0

Xl

3.14159

Program 6.3: Calculate the integer zeros of the
polynomial "X2 -15X+56".

Result (tabh)

Xl:= -100 .. 100
avec X poly [1 -15 56]=0
or avec X- 15 *X + 56=0

Xl

7 8

With the following programs, it is shown that students who have not learned integral and differential
calculus are nevertheless able to understand and use their school applications, which are essentially:
1. How large are areas under curves?

2. What are local extrema of functions?

Program 6.4: Calculate the area under a circular arc
with diameter 4 in the interval [0, 2].

Result

Xl:= 0 ... 2!0.0001
HEIGHT:= X*X - 4 abs sqrt
RECTANGLE:=HEIGHT*0.0001
++ RECTANGLE

AGG

3.14169223791

Program 6.5: Query 6.4, but shorter and more precise.
PI:=0 ... 2!0.000'001 poly [-1 0 4] sqrt*0.000'001 ++ '3

Result

PI
3.141'593'653'28

Program 6.6: Determine pi by zero determination with interval bisection
MI,LE,RI l:= 1.,2.,4. while RI - LE >= 0.000'000'01 !

47

 LE pred +(RI pred) :2;
 (MI,RI pred) if MI sin > 0!(LE pred,MI)
avec MI pos- =1
gib MI
'3
Intermediate result after first program line (tab):

MI ,LE ,RI l
1. 2. 4.
3. 3. 4.
3.5 3. 3.5
3.25 3. 3.25
3.125 3.125 3.25
3.1875 3.125 3.1875
3.15625 3.125 3.15625
3.140625 3.140625 3.15625
3.1484375 3.140625 3.1484375
3.14453125 3.140625 3.14453125
3.142578125 3.140625 3.142578125
3.1416015625 3.140625 3.1416015625
3.14111328125 3.14111328125 3.1416015625
3.14135742188 3.14135742188 3.1416015625
3.14147949219 3.14147949219 3.1416015625
3.14154052734 3.14154052734 3.1416015625
3.14157104492 3.14157104492 3.1416015625
3.14158630371 3.14158630371 3.1416015625
3.14159393311 3.14158630371 3.14159393311
3.14159011841 3.14159011841 3.14159393311
3.14159202576 3.14159202576 3.14159393311
3.14159297943 3.14159202576 3.14159297943
3.14159250259 3.14159250259 3.14159297943
3.14159274101 3.14159250259 3.14159274101
3.1415926218 3.1415926218 3.14159274101
3.14159268141 3.1415926218 3.14159268141
3.14159265161 3.14159265161 3.14159268141
3.14159266651 3.14159265161 3.14159266651

Result

MI
3.141'592'666'51

It can be seen that the first 7 digits of pi (3.141'592'65359...) after the decimal point are correct and

that this correctness requires only 28 steps.

Program 6.7: Calculate the first 7 Fibonacci numbers.
Xl:= 1 .. 7

FIB1,FIB2:= 0,1 for FIB2 pred ;preds ++ at X

Result (tab)

X, FIB1, FIB2 l
1 0 1
2 1 1
3 1 2
4 2 3
5 3 5

48

6 5 8
7 8 13

Program 6.8: Calculate the Pascal triangle up to the exponent 9.
Nl:= 0 .. 9
XTUP:= 1 for 0,(XTUP pred) + (XTUP pred, 0) at N
wort
Result (tab)

N, XTUP l
0 1
1 1,1
2 1,2,1
3 1,3,3,1
4 1,4,6,4,1
5 1,5,10,10,5,1
6 1,6,15,20,15,6,1
7 1,7,21,35,35,21,7,1
8 1,8,28,56,70,56,28,8,1
9 1,9,36,84,126,126,84,36,9,1

Now we present a brute force algorithm for a maximum.

Program 6.9: Find in a simple way for the local maximum of the sine function in the interval [1, 3].
LOCMAX:=1 ... 3.!0.00001 sin max '3

Result

LOCMAX
0.999'999'999'993

Program 6.10: Calculate the sine function and an approximation of the first derivative in the interval
[0,4].
Xl:= 0 ... 10!0.01
SINUS := X sin
DERIVATIVE:=X+0.000'1 sin -(X sin):0.000'1
RGBSIN:=green leftat SINUS
RGBDERIVATIVE:=red leftat DERIVATIVE

Result (bild):

Result (tab): It consists of 1001 lines.

49

X ,RGBSIN ,SINUS ,RGBDERIVATIVE ,DERIVATIVE l
 0. 0.,1.,0. 0. 1.,0.,0. 0.999999998333
 0.01 0.,1.,0. 0.00999983333417 1.,0.,0. 0.999949498758
 0.02 0.,1.,0. 0.0199986666933 1.,0.,0. 0.999799005067
 0.03 0.,1.,0. 0.0299955002025 1.,0.,0. 0.999548532308
 0.04 0.,1.,0. 0.0399893341866 1.,0.,0. 0.999198105529
 0.05 0.,1.,0. 0.0499791692707 1.,0.,0. 0.998747759772
 0.06 0.,1.,0. 0.0599640064794 1.,0.,0. 0.998197540071
 0.07 0.,1.,0. 0.0699428473375 1.,0.,0. 0.997547501448
 0.08 0.,1.,0. 0.0799146939692 1.,0.,0. 0.996797708907
 0.09 0.,1.,0. 0.089878549198 1.,0.,0. 0.995948237425
 0.1 0.,1.,0. 0.0998334166468 1.,0.,0. 0.994999171949
...
 9.98 0.,1.,0. -0.527131998452 1.,0.,0. -0.849757059217
 9.99 0.,1.,0. -0.535603334614 1.,0.,0. -0.844442914713
10. 0.,1.,0. -0.544021110889 1.,0.,0. -0.83904432662

The following examples are based on a fictitious table of grades with exams:

NAME, (SUBJECT, EXAl,MARKl l)l
Einstein German 1 3 1 2 1 3 1
 Physics 1 a 1 2 1 1 1 1
 Algebra 1 2 1 1 2
 Art 3 3 2 1
Gauss German 2 3 1 2
 Algebra 1 1 1 1 1
Guericke physics s 1 1 2 1
 German 2 1 1 2 1 1
 Algebra 1 1 2 1 1 2
Newton Physics 1 1 2 1 1
Confucius Philosophy 1 1 1 1 1 1
 Chinese 1 1 2 1 1
Marx economics 1 1 2 1 2 1
 Philosophy 1 2 1 3 1
Brecht German 1 1 1 1 1 1 1 1 1 1
 Philosophy 1 2 2 1 1 2
Cantor set theory 1 1 1 1 1
Tabment 6.1: guys.tabh (s: sick, a: absent)

Program 6.11: Calculate the weighted average scores for each person and subject and the total
value. Sort the data.
aus guys.tabh
gib AVG,(NAME,AVG,(SUBJECT,AVG m)m)
 AVG:=EXAl ++: *0.6 + (MARKl ++: *0.4)! ++:
rnd 1

Result (tab):

AVG ,(NAME ,AVG2 ,(SUBJECT ,AVG3 m) m)
1.4 Brecht 1.3 German 1.0
 Philosophy 1.5
 Cantor 1.0 set theory 1.0
 Confucius 1.1 Chinese 1.1
 Philosophy 1.0
 Einstein 1.7 Algebra 1.4
 Art 2.4

50

 German 1.8
 Physics 1.1
 Gauss 1.6 Algebra 1.0
 German 2.1
 Guericke 1.2 Algebra 1.2
 German 1.4
 physics 1.1
 Marx 1.4 Philosophy 1.6
 economics 1.2
 Newton 1.1 Physics 1.1

If we want to calculate the average after the completion of the first test, we can use the following

formula:

AVG:= EXAl nth 1 *0.3 + (MARKl ++: *0.7)! ++:

Program 6.12: Determine all subjects and individuals that received a 1 and a subsequent 3.
aus guys.tabh
avec NAME SUBJECT! MARK=1 & MARK succ=3 #succ = successor

Result:

NAME, (SUBJECT, EXAl, MARKl l)l
Einstein German 1 3 1 2 1 3 1
Marx Philosophy 1 2 1 3 1

Now we turn to other "simple" problems. It may be that these tasks are important not only for

school, but also for kindergarten. Now it is commonly assumed that addition of natural numbers is

the easiest and division the most difficult of the four basic arithmetic operations. This could be

wrong. We did experiments with a 3-year-old and a 6-year-old kindergartener. The task was to divide

11 apples among four children. The four children were represented by photographs. Neither the 6-

year-old child nor the 3-year-old child had a problem. They obtained the same result in the division.

It was presented in a table:

CHILD, APPLE
Ernst | | |
Clara | | |
Sophia | | |
Claudia | |
Tabment 6.1: 11 divided by 4

What can we learn from this experiment?
1. Young children can not divide an apple. They do not yet have a clear understanding of 1/2 or

2/3, ..., so that "ordinary" division cannot be taught.
2. There is no remainder in the division; there is no reason to waste anything.

Let's consider addition, the next simplest operation. The simplest representation of the number
three are three strokes. The same is true for any number of other natural numbers. Here we consider
only two numbers: 3 and 4.
We have to represent them by lists or bags (multisets) because the set {| |} is the same as {|}. The

result of each operation would be one.

51

APPLE l
| | |
three.tabh

APPLE l
| | | |
four.tabh

Program 6.13: three plus four Result
aus three.tabh,four.tabh
gib APPLEl

APPLEl

| | | | | | |

Here, too, it becomes clear that such a process could require only a small amount of effort in the
classroom. But what is the result of 4 apples and 3 pears? Since each pair of two tabments is again a
tabment, the result of this "addition" could be a tabment of the type APPLEl,PEARl.

Multiplication can also be handled in a very simple way. Consider the very simple question of how

many apples are needed for 4 children if each child wants 3 apples:

Program 6.14: four times 3 Intermediate result after line 2
CHILDl:= Ernst Clara Sophia Claudia
APPLEl:= [| | |] at CHILD
gib APPLEl

CHILD, APPLE l

Ernst | | |
Clara | | |
Sophia | | |
Claudia | | |

Not only is this multiplication algorithm simpler, it also makes it clear that multiplication is essentially
calculating the area of a rectangle.
We also obtain the above intermediate result by the following program:

CHILDl:=Ernst Clara Sophia Claudia
APPLES:= [| | |] at CHILD
gib CHILD,APPLES l # APPLES is atomic, i.e. each apple list is transferred
 # as one unit

If we want to apply the subtraction operation to collections with different elements (sets), the

subtraction can be expressed by a selection.

Program 6.15: Subtraction (difference) with sets Result
NAMEm := {Ernst Clara Ulrike}
sans NAME in {Ulrike Sophia}

NAMEl

Clara Ernst

We conclude this section with the following statements:

1. The result of our "arithmetic operations" are not numbers, but tables.
2. Dealing with tables is probably easier than dealing with numbers because the level of

abstraction is lower.

52

7 Multiplication, School and Digitization
In this chapter, it will be shown that the common multiplication algorithm for decimal numbers could

and should be supplemented by simpler ones and that, more generally, deep digitization (TD) should

be pursued. Deep digitization can probably only be implemented through mathematical

understanding. Unlike shallow digitization, where the user is usually presented with a computer

result by simply clicking a button and is often unsure if that result is correct, deep digitization should

allow the user to understand the result in the same way as calculating 132.66 times 453.2 with a

calculator. That could be the area of his property. The big difference between today's use of

calculators and today's use of powerful computers is that users have spent years learning the single

data operations: + - * : sin log Bulk data operations are not yet on the

curriculum. Selection - sometimes called a filter operation - and operations to merge table contents

for restructuring ... we count among the mass data operations. These are not applied to individual

numbers, but to possibly very large structured tables that may contain words and text in addition to

numbers. If the user has understood such mass data operations and they have been implemented

within the framework of a programming language, he can also interpret these results and, in case of

doubt, correct, change or improve them.

7.1 Who can multiply in their head?

Incident 1

In a mathematics exam that a second-year pharmacy student from Bologna had to take, the student
had to calculate 7 times 8, among other things. The pharmacy student: 59
The algebra professor: But 59 is not an even number. The pharmacy student: 64

Incident 2

Wallerie - an Erfurt kindergarten girl in the large group - is already a student today.
I gave her a task: How many effervescent bottles does a crate with 4 rows contain if there are 5
bottles in each row?
Wallerie thought for a while: Nineteen
Her father - a young engineer: You don't calculate, you guess.

Incident 3

I ask Isabella, a second grade pupil from Gerwisch: How much is 3 times 4? After a while: Twelve
The father: That took a long time.

From the second occurrence, I conclude that preschoolers have already understood the essence of
multiplication. Of course, it is possible that some preschoolers.... cannot calculate 4 times 5 exactly in
their head. But 3 times 4 I would trust any child to do. There is no question that they will never be
able to calculate 12 times 13 in this way. In fact, I don't think any human being is capable of
calculating 7 times 8 in their head. Older adults have had to calculate(?) the multiplication tables so
many times in school that they can only do it by heart and don't remember how they multiplied as a
child. It used to be very important to know the multiplication table by heart because it was a
prerequisite for written decimal multiplication.
The opinion of an amateur neurologist: In the many school years that the multiplication tables were

taught, the original neuron connections or brain cells were "overwritten" and are practically no

longer present.

Therefore, the vast majority of adults are not able to perform the original multiplication in their

heads. They can only do multiplication tables by heart and cannot do written decimal multiplication

in their heads. Even when multiplying smaller numbers such as 29 times 63, they will work with

easier-to-use arithmetic laws and not use the algorithm in which their teachers, parents and

53

grandparents invested a lot of time and effort. Based on incidents 1, 2, and 3, one can even surmise

that many adults don't even know that children have to do math to get the results. When you're that

young, you can't memorize it yet without doing the math. An almost correct answer indicates that

arithmetic has been done, just as a very quick answer indicates that arithmetic has not been done,

and thus no thought has been given.

7.2 Who can multiply in writing?
Calculating 7 times 8 with a pencil should be mastered by every child in the second grade. The

prerequisite is that you can imagine the numbers up to one hundred. You can do that if you can
count to a hundred. If you illustrate the task, many children should be able to solve it even faster:
Each of the seven children wants eight candies. How many candies do you need to buy?
1. Write the names of seven children one below the other.

2. Put eight strokes legibly after each name.

3. Count all the strokes.

Everyone can imagine that you can multiply arbitrarily large numbers with this algorithm. But it
would be nice if you could not only pronounce the result and write it as a word, but if you could write
the result more compactly as a decimal number.

4. Convert the result into a decimal number.

If someone wants to calculate 100 times 100 in this way, the probability of getting a correct

result is very low. Moreover, it would take a very, very long time. In the age of powerful computers,
however, these arguments should be insignificant. What matters is to have a clear understanding of
an algorithm. The question remains:
Is stroke list multiplication the simplest multiplication algorithm?

7.3 Who can program the multiplication?
Incident 4

An engineer from my former institute tells me that she was the first to learn assembler at the
Staßfurt television factory. With it, she was able to solve efficiency problems after the reunification,
which a new boss of the TV set factory had not trusted her to do. She remembers very clearly that
she had great difficulty learning C.

Incident 5

Since I was not a professor, I was able to participate in IBM Germany's visiting scientist program in
1992. In the IBM Research Center - the scientific center in Heidelberg - the database project AIMP
(Advanced Information Management Prototype) had been developed for many years. Essentially, this
involved the database query language HDBL (Heidelberg Database Language), with which NF2
relations could be processed. These relations generalize the table concept of the relational data
model to structured tables. In the end, however, IBM Germany was not able to convince the
headquarters in the USA that their prototype should be brought to market. Even more remarkable to
me was that an employee who was listed as an author in a very large number of publications on
HDBL could not answer the simplest questions about HDBL. He then explained to me that he had
programmed for years in PASCAL for HDBL file management and actually had no interest in
formulating queries in HDBL.

Incident 6

I wanted to understand UNIX and bought the book "UNIX und C" from VEB Verlag und Technik. I
read, marked, read, marked, read, marked and repeated. But only slowly and with little success.

54

In my opinion, the most important conclusion from these events is that it is very important which
language you learn first. Relearning should usually be more difficult than newlearning. Furthermore,
one must assume that ways of thinking from procedural or object-oriented programming languages
offer few advantages for query languages. Furthermore, one can certainly not learn programming by
reading alone. You have to make mistakes yourself.
I think operations can be taught to most people through algorithms rather than descriptive
formalizations. If someone can program an algorithm, he can or should break it down into more
elementary steps to understand it better. If suitable programming languages are available, decimal
multiplication does not stand a chance against the stroke list algorithm in terms of learnability and
readability. No matter how high the abstraction level of a programming language is. I believe less
than one percent of the world's population today can program decimal multiplication in 30 minutes.
In fact, far less than 1 percent of the world's population are software developers.

Recently, according to Hacker Rank, China not only took first place in functional programming
through well-organized programming Olympiads, but also first place in the overall ranking of the
"best developers" in the world, ahead of Russia. For me personally, this is particularly impressive
because a Chinese student who graduated with me in 2009 told me that he left China because he
was supposed to learn PASCAL at his Chinese university first. He did not consider this (methodically
perhaps not so bad) language to be up to date.
The economic effects, which are certainly also due to China's education policy, can already be clearly
seen today. From 1990 to today, Germany's share of global exports of high-tech goods has almost
halved. China has increased its share from one to 24 percent during this time (according to
Handelsblatt).

The corresponding code can certainly be solved most elegantly in the functional French language
OCaml. That OCaml has very good concepts and efficient implementations can perhaps also be seen
from the fact that Microsoft has copied OCaml. F# even has the same syntax as OCaml.
Let's first look at a multiplication algorithm at what I consider the high abstraction level of functional
programming.

However, let's first briefly clarify how multiplication is practically performed in OCaml:

Program 7.3.1: User-level integer multiplication
in OCaml

Result

7*8;; - : int = 56

For 7.1 times 8.1 you have to choose another operation symbol.

Program 7.3.2: Multiplication of floating point
numbers on user level in OCaml

Result

7.1 *. 8.1;; - : float = 57.51

OCaml also has a data type bigint for arbitrarily large integers.

Certainly, one can imagine that even very small children can click the keys 7, *, 8 and =. But it

should be clear that this clicking will not lead to understanding, nor will these clickers themselves be
able to solve a corresponding problem. Even typing such examples a hundred times will not
sufficiently improve understanding of multiplication. Now follows a program for multiplication in

OCaml. We call the corresponding operation mult. This is based on a previously defined new data

type nat. Without the "auxiliary" operation add, it might be difficult to program mult. A

conversion of the self-defined datatype into decimal numbers is omitted at this point. The following
syntax is very elegant, but in a certain sense also tricky. We do not want to go into details here and
refer to the OCaml documentation on the Internet. Even if you are not familiar with functional
programming and with OCaml, you can see that the programs are ingeniously compact and clear. The

55

reason for this is that in this case you don't have to think of a natural number in decimal or binary.
Rather, the definition of nat is based on the childish idea of counting zero one two

three ... except that you don't always have to invent new words for new numbers. According to

the following definition, 0=zero, 1=successor zero, 2=successor(successor zero), and
3=successor(successor zero)), This naive conception of the natural numbers, which certainly every
child already possesses very early without learning it, was "rediscovered" only in 1889 by Peano.
A side note: Picasso actually also worked his whole life to be able to paint in a childlike, naive way
again.
All axioms of Peano are hidden in the two lines of the program. They actually only say:

1. Zero is a natural number
2. Every natural number has exactly one successor.

The fact that the operations are practically useless without the use of decimal numbers for input and

output is irrelevant at this point. Here it is only about getting an impression of the logical problems.

Program 7.3.3: Multiplication of natural numbers with own data type in OCaml
type nat =
 | Zero
 | Succ of nat
;;
let rec add x = function
 | zero -> x
 | Succ y -> Nachf(add x y)
;;
let rec mult x = function
 | zero -> zero
 | Succ y -> add x (mult x y)
 ;;
let seven=Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero))))));;
let eight=Succ seven;;
mult seven eight;;

Result (nat):

- : nat =
Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ

56

 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 (Succ
 Zero))))))))
)))

I would be very happy if someone would send me another well understandable own multiplication

program. It will then be published on the ottops.de page.

Program 7.3.4: Stroke list multiplication in o++o
NAMEl:=Tina Ernst Clara Sophia Ulrike Claudia Kathe
STROKEl:= [| | | | | | | |] at NAME
gib STROKEl
++1

Intermediate result after 2 lines in tabh format

NAME, STROKEl l
Tina | | | | | | | |
Ernst | | | | | | | |
Clara | | | | | | | |
Sophia | | | | | | | |
Ulrike | | | | | | | |
Claudia | | | | | | | |
Kathe | | | | | | | |
Final result
56

If you are only interested in the end result, you can also replace all names with one. You could also

write a gib statement for the last two lines that counts through regardless of the given structure:

Program 7.3.5: Shortened stroke list multiplication in o++o
NAMEl := otto *l 7
STROKEl:= | *l 8 at NAME

57

gib SEVEN_TIME_EIGHT
 SEVEN_TIMES_EIGHT:= STROKE! ++1

Result

SEVEN_TIMES_EIGHT
56

Everyone can freely choose new column names in o++o. However, lowercase letters must not be
used. Instead of SEVEN_TIMES_EIGHT you could also choose the shorter PRODUCT_7_8. The column
name SEVEN_TIMES_EIGHT in the gib part does not occur in the table created with the first two
rows. It is intended as a new aggregation column. The last line expresses that this single output
column should be calculated by the counting aggregation (++1). Because of the indentation (4
spaces) this line logically still belongs to the gib statement.
This program can only be formulated because o++o works with structured tables. Everybody should
judge for himself which multiplication is more child-like and therefore easier to understand. At this
point it should be mentioned that o++o multiplication is much more general than in other
programming languages. However, this does not mean the program above, but the operation hidden
behind the symbol *. For example, you can multiply a whole tabment by a number:

Program 7.3.6: Convert several German net prices with o++o into gross prices.
66.1 675.8 77 *1.19

Result (tabh)

PZAHLl
78.659 804.202 91.63

A math teacher at the Magdeburg Physical Education High School noted that students have no
trouble multiplying in writing in positional systems other than the decimal system. Let's talk about
binary numbers for a moment. From my point of view, it is very interesting that it again took a
mathematical genius like Leibniz to make dual numbers respectable, although calculating with dual
numbers is much easier than calculating with decimal numbers. This would, of course, also make
binary multiplication much easier to teach than decimal multiplication. One only has to memorize a
small multiplication table:

- 0*0=0

- 1*0=0

- 0*1=0

- 1*1=1

This algorithm has other advantages: It is very efficient - both in terms of memory and speed. That is
why it is used in computers. Not everyone needs to be aware of it. Even if the user knows only
decimal multiplication, there can be no problems. His decimal numbers can be converted to binary
without his knowledge, binary calculations are performed, and when the result is output, it is
converted back to decimal. Similarly, one can imagine that a decimal number is converted to a dash
number for a child (user), dash multiplication, which he should have understood, is applied, and the
dash number is converted back to decimal. This is to express that the user should learn the most
memorable and useful multiplication algorithm and be able to trust that the computer experts will
"implement" his algorithm correctly.
This is only to say that the results should be correct. Internally, another, more efficient algorithm can
be used. Of course, this idea of internal optimization does not only apply to multiplication algorithms.
The section concludes with a multiplication algorithm that is reminiscent of pivot tables, but very
close to the decimal multiplication algorithm taught in schools today.
The pivot element can be determined with 2 o++o lines.

58

Program 7.3.7: Multiplication of a list of length 2 by a triple using matrix multiplication in o++o

10 3 *mat (100,20,4)
SU:=ZAHL tup ++
addaggs ZAHL ! ++

Intermediate result after the first line in tab format

ZAHL ,ZAHL ,ZAHL l

1000 200 40
 300 60 12
Intermediate result after applying the second line in tab format:
ZAHL ,ZAHL ,ZAHL ,SU l
1000 200 40 1240
 300 60 12 372
Final result in tab format
ZAHL ,ZAHL ,ZAHL ,SU l
1000 200 40 1240
 300 60 12 372
1300 260 52 1612

The final result of multiplying 13 times 124 is 1612.
Math teachers must find out whether this multiplication is easier to teach than today's multiplication

with decimals by having entire classes multiply using both methods.

Program 7.3.8: A complete o++o programm for multiplication, based on matrix-multiplication
X:=4321
Y:=678
XXl:=X zil zahl
YYl:=Y zil zahl
XL:=XXl ++1
YL:=YYl ++1
BXl:= 10 *l XL hoch (XL- 1 ... 0! -1) * XXl
BYl:= 10 *l YL hoch (YL- 1 ... 0! -1) * YYl
MATRIX:= BXl *mat (BYl transpose)
SU:=SP1 tup ++
addaggs SP1 ! ++
gib SU l
ultimo
'3
Result (tab)

SUl

2'929'638

The operation zil transfers a text into the list of its characters (Chinese zi). This and other

operations could also be used advantageously for teaching German or English. Each letter is

converted into a digit by the conversion function zahl. Teaching pivot multiplication in one form or

another would also prepare students for the use of pivot tables, which play a large role in today's

practice.

The last program in this section is intended to implement pivot multiplication with the help of o++o

operations.

Program 7.3.9: More detailed matrix multiplication of factors 7'653 and 4'322 in o++o
defop $X myop.powerlist = begin

59

X1l:=$X zil zahl
gib X1 l-
XPOT:= (10 ^ (X1 pos - 1))
X2:= XPOT * X1
gib X2l-
end
aus 7'653 myop.powerlist
*mat 4'322 myop.powerlist transpose
addaggs SP1 ! ++
ultimo
++
'3

Final result (tab)

33'076'266

7.4 Stroke list multiplication versus decimal multiplication
The written decimal multiplication had a great importance because many people could calculate with
it even two 8-digit numbers correctly with high probability. The correctness could be improved even
more by the sample of nine. In addition, it was by far the fastest algorithm in earlier practice.
The later slide rule was faster, but not as accurate. The number table with logarithms was too
demanding for some. In the age of computers, both techniques have already been mothballed.
The written decimal algorithm is still used by many people ..., and everyone who masters it is proud
of his skills. The question is: Can we replace the decimal multiplication algorithm in school with the
stroke list multiplication or/and complement it with other multiplication algorithms?
The dash multiplication has not only the advantage that it can be taught already in an earlier class. If

this algorithm is repeated accordingly, everybody notices that just this multiplication realizes the

standard application - a rectangular area calculation. To derive this application from decimal

multiplication seems too difficult. Given the programmability of both algorithms, it should quickly

become clear that dash multiplication is far superior to decimal multiplication. The dash list

multiplication above requires 4 steps to be processed in sequence. In particular, there is no loop and

no recursion. On the other hand, the above algorithm shows that a programming language must be

able to work with structured tables in order to provide user-friendly multiplication programs. Since

this stroke multiplication processes mass data in a sense, it prepares better for the digitization of

society than the algorithm taught in schools today. If it is desired that everyone should be able to

program multiplication, simpler multiplication algorithms must be taught.

7.5 How could enrich o++o the school curriculum?
We have developed a data model with an associated programming language o++o, which should not

only be the basis for information systems for business, but also offer many advantages for school

teaching. Since the language o++o is based on mathematical concepts, it should be integrated into

mathematics classes. But, also in the other subjects o++o can be used usefully, because the

extraction and visualization of information from the German Wikipedia seems to be important for

every school subject. A programming language should enable students to better solve the many tasks

they will face in their future. This is especially true for the digitalization ahead of us. Digital actually

means that everything comes down to two things - zero and one. I can't imagine anyone tracing the

powerful stroke list operation behind the gib statement, for example, to such thinking. Our axioms of

the stroke list operation were formulated at a high abstract algebraic level, where thinking in terms

of zeros and ones is only a hindrance. For mathematics, abstraction is more important than

digitization in the true sense of the word. Although o++o has so far only dealt with questions of

60

content, CSS in o++o can also be used to realize many questions of format. The following example

shows that it also makes sense to capture form questions directly in o++o:

Program 7.5.1: The product of 5 numbers in thousands format in o++o
28'911 5'233 199 6'311 6'781 ** '3

Result

1'288'424'128'758'129'267

o++o could perhaps be taught in the lower grades:

Program 7.5.2: The sum of the first hundred numbers (Gauss problem)
1 .. 100 ++

Result

5050

I think that these and many other difficult problems could be taught in the lower grades as well. So as
not to be misunderstood at this point. We should already be drawing on experience gained decades
ago with calculators when introducing digitization in schools. Also, the too early and too wide use of
calculators has probably led to many students having a poorer command of basic arithmetic..., worse
at calculating in their heads than in earlier grades. With incorrect inputs to the calculator, many also
seem unable to estimate the expected magnitudes of the results. For this reason, the calculator is
not allowed here until seventh grade.
For example, I even think that spelling programs like WORD should not be taught in school until
about the seventh grade, either. If a student has experienced firsthand that WORD corrects almost all
of his spelling mistakes, it is very difficult to make him understand ... that his own spelling skills are
important for his future. Similarly, I would have the introduction of digital whiteboards critically
examined.
Last December, at the University of Halle, I noticed that mathematics professors were still working

with blackboards and ordinary chalk.

Program 7.5.3: Execute an o++o program in the second class on the blackboard.
4 3 1 12 ++

This calculation on the blackboard with chalk or pencil could also prepare for future digitization. In
addition, for motivation reasons, the teacher could already demonstrate to the lower grade students
that the symbol ++ can be used to solve the Gaussian problem or even larger problems. In my

opinion, many people do not actively know how to formulate a conditional, although it is not
difficult. However, it is not part of the curriculum. The conditions that select all people living in
Magdeburg LOCATION=Magdeburg or filter out all rivers that are longer than 1000 km

LENGTH>1000 do not look complicated. Many can't do that, because today's search engines don't

ask for that or can't handle it. But if I need to spontaneously extract important information from a
company database in a future company, I need to know that.
In my opinion, students' problem-solving skills can be improved in many ways. Even the applications

of differential and integral calculus could be taught in secondary schools without having to

understand the difficult theories of Leibniz and Newton. With o++o, we can calculate areas under

curves in a short line of code without using hard-to-read loops. An approximation of the area under a

part of the first sinusoidal arc can be calculated in one line using Archimedes' 2000 year old

algorithm:

Program 7.5.4: This o++o program does not require integral calculus!
1 ... 2!0.0001 sin *0.0001 ++

Result

61

0.956536680039

In the following, an application of differential calculus is presented, which can be performed without

knowledge of differential calculus.

Program 7.5.5: An o++o program to approximate the local minimum of the parabola (a special
polynomial) "3 x2 + 4 x + 6"!
-10 ... 10!0.0001 poly [3 4 6] min

Result

4.66666667

I believe that this can be taught already in every 9th or 10th grade, without going into details here.

When I talk to students, I sometimes have the impression that computer science classes are more

about form issues (HTML, ...) than content. We know that it is very hard, but we should still reach the

goal given by our Dr. A. Merkel: Everyone should learn to read and calculate, but also to program. If

you look at programming languages like C, Java or Python, the goal is not feasible. For that, you need

simpler languages that are able to solve end-user problems with short programs. C and Co. had other

goals. They should serve to program systems on which hundreds or more people can work, which can

contain many millions of lines of code and still work performantly. o++o follows the new paradigm of

table-oriented programming and has above all the goal formulated by A. Merkel. If o++o had not put

methodical and pragmatic questions in the foreground from the beginning, this goal would not be

realizable also with o++o. Mastering operations for mass data seems to be necessary for a long-term

digitization strategy.

7.6 Can the stroke list operation be taught as early as third grade?
As already mentioned, the gib statement, which includes the dash list operation, is a powerful tool. It

can be used not only to sort normal flat tables, but also any tables. At the same time, you can also

use aggregations such as ++ (sum), ++1 (count), etc. If third grade students have difficulty with a

formal syntax, it does not necessarily mean that the algorithm behind it cannot be taught. For

example, they could count animals. This does not have to be just a number. A table that determines

the number for each type of animal would certainly be easy to teach as well:

Program 7.6.1: Counting animal species with strokes
ANIMAL:=donkey sow boar donkey boar sow donkey
gib ANIMAL,CNT m
 CNT:=ANIMAL! ++|

Result (tabh)

ANIMAL, CNT m

Boar | |
Donkey | | |
Sow | |

The following example is a bit more demanding, because the results table is structured.

Program 7.6.2: Counting in structured tables
<TAB!
BRAND,COLOR, TYPE, WEIGHT l
VW Blue Polo 1250
IFA Papyrus 500 580
VW Blue Golf 1450
Audi Yellow Quatro 2070

62

VW Blue Polo 1380
IFA Beige 601 620
VW Red Golf 1400
Audi Red Quatro 2100
IFA Beige 601 620
VW Beige Polo 1300
!TAB>
gib BRAND,CNT, (COLOR,CNT m) m

 CNT:=TYPE! ++|

Result:

BRAND, CNT, (COLOR, CNT2 m) m
Audi | | Yellow |
 Red |
IFA | | | Beige | |
 Papyrus |
VW | | | | | Beige |
 Blue | | |
 Red |

You can perhaps imagine children counting and sorting at the blackboard using this algorithm. In
o++o a set (m) or a multiset (bag) is always sorted by the first column names. In the example above

these are BRAND and COLOR.
That is, children can presumably sort data in structured tables. However, today's computer science
students do not learn a sorting algorithm for structured tables. An article of mine in the German
Wikipedia, which included especially this sorting, was deleted, because it "does not belong to the
basic knowledge of a computer scientist".

7.7 Does the school calculator from Texas-
Instruments calculate wrong?

The TI-30 ECO RS calculator shown on the left, which has

been approved by German education ministries as a

school pocket calculator, gives the following results for

the task

2 hoch 2 hoch 3

64. Correct according to the rules of today's

mathematical conventions, which can also be read in

Wikipedia under operator order (right-associative),

would be 256.

For hoch, however, you have to type the symbol yx

there.

Now, of course, you can say that every company can

calculate as it pleases. They do that, too. With the

Windows calculator (mode normal), 1 + 2 × 3 also results

in a wrong solution in the sense of school mathematics.

Saxony-Anhalt may not have enough money to sue the

63

American tech giant Microsoft. But how can we prevent many students from losing their orientation

because of this "diversity"?

As the picture above suggests, the calculator makes a very good impression. However, it behaves

differently from what is taught in school in many other aspects and is also difficult to use, making it

prone to errors even in simple tasks.

In mathematics, the "sine of 3.14" is usually written as follows:

sin(3,14)

In the mathematics textbook "Schlüssel zur Mathematik" (Sekundarstufe Sachsen-Anhalt Klasse 10

Cornelsen, ISBN 978-3-06-0044558-7) it says more regrettably:

"The function f(x) = sin x is called a sine function."

The Texas Instruments calculator does not accept the comma as a decimal number separator and you

must first press 3.14 and then the sin key. At least Texas Instruments is consistent in typing at this

point. The square root of 4 is also found by first typing the 4 and then the square root sign. As

everyone expects, the result is 2. But 2 without the decimal point would also be conceivable? With

2+2, Texas Instruments also determines 4. and not 4, although everyone knows that the result of this

addition is an integer. To prevent misunderstandings at this point: We do not criticize that this Texas

Instruments calculator chooses the more user-friendly typing variant for single-digit operations, but

that curriculum and school practice differ substantially here.

Designations on the keyboard are also surprising.

Σ+ (EE, RCL, STO, ...).

Many people are already familiar with the M+ symbol - add to memory - due to predecessor

computers. Is innovation to be feigned here?

64

In this context, it is also interesting to note that
pocket calculators already existed in the 1970s
whose range of functions was perfectly
adequate for use in mathematics lessons and
for a large number of applications, especially in
the scientific and technical fields.

These calculators were characterized by a clear
keyboard layout that did without multiple key
assignments. The calculator architecture
consistently implemented left-to-right
arithmetic, and it was possible to dispense with
bracket levels. The range of functions was
limited to the necessary and frequently used
functions. This minimized problems arising from
different designs and ensured simple and
intuitive operation.

One example is the scientific calculator shown
in the figure, developed and produced in Japan
in 1975.

From o++o point of view, however, the TI-30 ECO RS behaves correctly for the most part in these

problems. For example, with 2 to the power of 3 to the power of 4, it chooses the way of calculating

that the majority of people prefer, namely to calculate from left to right. This is also true for

engineers, as I experienced many times. That one-digit functions are typed after the number (the

argument), we also welcome, because this way of calculation also follows the principle from-left-to-

right:

3.14 sin cos

The calculator from Texas-Instruments first calculates the sine and applies the cosine function to the

result. This is not taught in math classes, but it is also easier to understand. Unfortunately, the

calculator is not completely consistent at this point. At 1 + 2 × 3, it no longer calculates from-left-to-

right. Now it calculates as Descartes supposedly wanted it to. Only so that one could write a

polynomial somewhat more elegantly, humans gave up the general principle from-left-to-right to

calculate. Since one can regard today also a list of numbers as input value, this argumentation from

the 17-th century has no more right to exist from our view. Instead of

X3 + 2 * X2 + 3 * X +4

we can today briefly and succinctly X poly 1 2 3 4 type.

In general, we also estimate that all of today's calculators are morally worn out. They should no

longer be used at school at all. The first electronic, actually palm-sized calculator was developed as

early as 1967 and had - as is still common today - a very small display. Since cell phones with much

larger displays exist today in 2023 and we also know much more powerful apps with a much wider

range of applications, calculators should generally be banned from school today or displayed in the

school museum.

65

Let's consider a very simple problem. You want to add 10 numbers with the Texas Instruments

calculator. At the end of the calculation, when you realize that the result cannot be correct, you

cannot look at the input again. They have to type in all the numbers again. It is unclear whether they

do this correctly if all these numbers consist of 10 digits.

Let's continue by looking at the % key. If you play with the calculator and type for example

10 %

the result is 0.1.

So you might suspect that the percent key is just mislabeled, and it just divides by 100. The percent

key is also hard to type on this calculator, since you have to type 2nd beforehand. Also, once you find

the little blue percent sign, which doesn't have its own key, you have to concentrate very hard to see

if you should press the key above or below it. These are, of course, potential sources of error. Of

course, you also have to know whether the 2nd key is only valid for the next operation or until I press

it again. If one then types for example

10 + 10 %

If you press = , you first get 1. Only when you press = further does the current user get the number

11 that he probably wants.

But if you think mathematically, only one of the following two solutions comes into question:

10 + (10 %)

or

(10 + 10) %

You get 10.1 in the first case and 0.2 in the second.

That is, with this symbol mathematical thinking is contradicted. How should one understand

10 + 10 %

differently as a term? Why do all students need to learn a term definition if it is not applied in

calculator practice at school?

To our knowledge, there is only one programming language that uses this symbol at all in connection

with percentage calculation. Here, however, +% is used as a two-digit operation symbol. This also

makes it mathematically clear and clean.

Just as the three letters of sin represent an operation symbol, +% is also an operation.

In o++o results in 10 +% 10 11. .

If you type in the Texas Instruments calculator

10 sin x2

so you never see on the display which operation symbol you have just typed or typed before.

Furthermore, the keyboard labels make it difficult to understand the "dot before dash" rule when the

multiplication sign consists of 2 dashes and the division sign contains a dash. We conclude the

section with what appears to be a very simple multiple addition. We think that hardly anyone can

correctly manage an addition of very many numbers with a calculator.

66

Sophia has built a tiger out of Lego bricks. At the end of the description of the construction set, all

the types of bricks used are listed with the number of bricks used. Grandpa wants to know how many

Lego bricks the tiger is made of?

67

Program 7.7.1: Sum of many numbers
8 4 2 1 15 8 4 1 10 6 6 4

,4 1 1 2 14 4 2 2 4 1 2

,4 2 1 4 4 2 1 2 1 1 1 1

,6 2 1 2 1 2 4 2 2 1 4 1

,4 2 1 2 1 17 11 3 1 2 2

,2 3 4 4 4 11 2 1 2 1 2 4

,7 4 2 4 14 6 5 4 6 4 12 4

,2 2 2 1 6 1 1 2 2 1 1 2

,4 4 2 6 2 2 6 1 4 4 5 5 22

,4 14 4 8 5 8 4 1 6 12 6 2 4

,1 4 2 4 10 6 2 8 1 1 12 1

,1 2 1 1 8 6 6 6 2 1 1 4 4

,2 2 6 2 6 4 17 7 26 2 4 2

,8 12 2 6 6 4 16 8 6

,2 4 3 2 1 2 4

,2 2 1 1 1 2 1

++

Result:

755

The above program consists of a tuple of 16 lists of numbers. This is certainly more advantageous

than typing a single list or tuple. In the latter case, one would have to type commas instead of the

many spaces that are easy to type, which would certainly not be an advantage.

Since people often make typing errors or type one key too many or too few, the question remains: Is

the result correct?

There is no sample of nine for addition. Here some possibilities for samples shall be presented. One

could first check if the number of numbers in the program is correct.

Program 7.7.2: How many numbers does each list contain?
8 4 2 1 15 8 4 1 10 6 6 4

,4 1 1 2 14 4 2 2 4 1 2

,4 2 1 4 4 2 1 2 1 1 1 1

,6 2 1 2 1 2 4 2 2 1 4 1

,4 2 1 2 1 17 11 3 1 2 2

,2 3 4 4 4 11 2 1 2 1 2 4

,7 4 2 4 14 6 5 4 6 4 12 4

,2 2 2 1 6 1 1 2 2 1 1 2

,4 4 2 6 2 2 6 1 4 4 5 5 22

,4 14 4 8 5 8 4 1 6 12 6 2 4

,1 4 2 4 10 6 2 8 1 1 12 1

,1 2 1 1 8 6 6 6 2 1 1 4 4

68

,2 2 6 2 6 4 17 7 26 2 4 2

,8 12 2 6 6 4 16 8 6

,2 4 3 2 1 2 4

,2 2 1 1 1 2 1

++1

Result (tab):

12 11 12 12 11 12 12 12 13 13 12 13 12 9 7 7

Counting the numbers of elements of several short lists is certainly easier than counting the total

number. It could also be that large numbers arise when typing if a space is forgotten:

Program 7.7.3: Select larger numbers to check their existence in the lego list.
8 4 2 1 15 8 4 1 10 6 6 4

,4 1 1 2 14 4 2 2 4 1 2

,4 2 1 4 4 2 1 2 1 1 1 1

,6 2 1 2 1 2 4 2 2 1 4 1

,4 2 1 2 1 17 11 3 1 2 2

,2 3 4 4 4 11 2 1 2 1 2 4

,7 4 2 4 14 6 5 4 6 4 12 4

,2 2 2 1 6 1 1 2 2 1 1 2

,4 4 2 6 2 2 6 1 4 4 5 5 22

,4 14 4 8 5 8 4 1 6 12 6 2 4

,1 4 2 4 10 6 2 8 1 1 12 1

,1 2 1 1 8 6 6 6 2 1 1 4 4

,2 2 6 2 6 4 17 7 26 2 4 2

,8 12 2 6 6 4 16 8 6

,2 4 3 2 1 2 4

,2 2 1 1 1 2 1

avec ZAHL>9

Result (tab)
ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl, ZAHLl

15 14 17 11 14 22 14 10 17 12
10 11 12 12 12 26 16

Since each list is of type ZAHLl, the multi-digit numbers are filtered out in each list, which can then be
checked again.
Furthermore, you can calculate the sum of each list and discard any that appear to be incorrect.

Program 7.7.4: Calculate the sum for each list.
8 4 2 1 15 8 4 1 10 6 6 4

,4 1 1 2 14 4 2 2 4 1 2

,4 2 1 4 4 2 1 2 1 1 1 1

,6 2 1 2 1 2 4 2 2 1 4 1

,4 2 1 2 1 17 11 3 1 2 2

,2 3 4 4 4 11 2 1 2 1 2 4

,7 4 2 4 14 6 5 4 6 4 12 4

,2 2 2 1 6 1 1 2 2 1 1 2

,4 4 2 6 2 2 6 1 4 4 5 5 22

,4 14 4 8 5 8 4 1 6 12 6 2 4

69

,1 4 2 4 10 6 2 8 1 1 12 1

,1 2 1 1 8 6 6 6 2 1 1 4 4

,2 2 6 2 6 4 17 7 26 2 4 2

,8 12 2 6 6 4 16 8 6

,2 4 3 2 1 2 4

,2 2 1 1 1 2 1

add ZAHL tup ++

ultimo

Result (tab)
ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHLl,ZAHL,ZAHLl,ZAHLl

69 37 24 28 46 40 72 23 67 78 52 43 80 68 18 10

In the standard representation of a list, the elements are arranged one below the other (vertically).
Only single-column lists are often represented horizontally to make better use of the screen. Thus,
the above lists are also considered logically vertical, which is why add must be applied and not an
assignment.

7.8 Is EXCEL morally worn out?
Program 7.8.1: An o++o program for which EXCEL needs more than six worksheets!
<TAB!
NAME, LENGTH,(AGE,WEIGHT m)m
Klaus 1.68 18 61
 30 65
 61 80
Rolf 1.78 40 72
Kathi 1.70 18 55
 40 70
Walleri 1.00 3 16
Victoria 1.61 13 51
Bert 1.72 18 66
 30 70
!TAB>
avec NAME! AGE>20
gib BMI,(AGE,BMI,(NAME,BMI m) m) BMI:=WEIGHT:LENGTH:LENGTH!++:
rnd 2

If you realize this o++o program in EXCEL you need more than 6 worksheets. Hardly anyone
overlooks these EXCEL sheets, which is why they are very difficult to change. More details can be
found under o++o versus EXCEL. Spreadsheet programs have several advantages and are widely
used, but they also have a number of disadvantages, which we will list:

1. Data and formulas are mixed. For this reason, and because an EXCEL worksheet can contain
hundreds or even thousands of formulas, it is almost impossible to check the correctness of
the programs or to adapt them to changes.

2. EXCEL does not know schemas for structured tables: e.g. SUBJECT,MARKl l describes a
structured schema - here a list of subjects is described, and for each subject there is also a list
of marks.

3. EXCEL can display structured tables visually, but it cannot sort them directly or process them
reasonably.

4. You cannot use EXCEL to query databases, XML or Wikipedia. For that you would still have to
learn SQL, XQuery or better o++o.

5. EXCEL formulas are relatively cryptic because, for example, they often contain individual cell
designations. For example, the sum over a column is written in EXCEL in the form:

70

=SUM(F12:F75)
6. A single EXCEL formula can require more analysis than a complete o++o program.
7. EXCEL contains only a few mathematical concepts and therefore requires an excessive

amount of detailed knowledge.
8. EXCEL offers the decimal point to German and other users. However, this makes it difficult to

exchange corresponding worksheets of international companies across country borders,
since many countries prefer the decimal point.

9. Since data and programs are usually separated in o++o, the data can be used by several
programs without any problems. This is more difficult with EXCEL.

10. For aggregations (sums, averages, maxima, ...) per value you have in general to presort or
group in EXCEL but not in o++o.

11. In EXCEL, you have to write each number in a separate cell. This could quickly overwhelm a
smartphone screen.

12. o++o is based on an abstract tabment concept for data. A tabment can already be
represented in many ways by default: web tab xml image column ... and also compact (hsq).
With CSS, the output of o++o can be formatted almost arbitrarily. EXCEL, on the other hand,
is based on a concrete print image. This makes it easier to create simple applications at first,
but it is rather a disadvantage for the complexity of today's applications.

13. After studying the above criticisms of EXCEL, a VW engineer remarked: At VW, EXCEL can be
used by any employee at will. As a rule, however, it is only simple tables that are to be made
"nice". Sometimes a few simple arithmetic operations are necessary. Comprehensive,
complex applications do not take place in EXCEL.

EXCEL does not know mass data operations and could be morally worn out for this reason alone.
Therefore I plead for removing EXCEL programs also from school lessons and replacing them by more
powerful and promising concepts and systems.

7.9 o++o Proofs
Proofs have played a minor role in school and even outside the world of professional
mathematicians. Yet everyone wants to have confidence in a calculation, a system, or a calculator.
When confronted with a new type of calculator or system, everyone first tries to solve problems like

2 times 3. Who suspects further problems, tests e.g.. 1 plus 2 times 3.
The highly respected German economist Professor Sinn says in his lecture Energiewende ins Nichts
(see youtube) that calculations only really make sense if you can understand them. To do this, you
have to understand all the sub-steps in detail.
We have been working on this requirement of Prof. Sinn for decades. The SQL designers had
formulated this requirement somewhat differently at the beginning of their development:
SQL should become an end-user language.
It follows directly that the average consumer should be able to understand SQL programs. Today,
however, almost all SQL programmers come from the computer science corner.
The importance of statistics in schools is increasing.
How to teach a student a new statistical function, such as the average ++: or the function mad of

o++o. If you simply apply the function to several lists of numbers and look at the result, you usually
cannot understand its meaning. However, if the teacher knows that the students have already
understood the functions ++ (sum) and ++1 (count), this is no longer so difficult.

Program 7.9.1: Preparation of an o++o proof for the ++: operation..
Xl:= 3 5 4 2 1
SUM:=Xl ++
CNT:=Xl ++1
MYAVG:=SUM:CNT
OTTOAVG:=Xl++:

Result (ment)

71

<TABM>
 <SUM>15</SUM>
 <COUNT>5</COUNT>
 <AVERAGE>3.</AVERAGE>
 <OTTOAVG>3.</OTTOAVG>
 <X>3</X>
 <X>5</X>
 <X>4</X>
 <X>2</X>
 <X>1</X>
</TABM>

Despite this (docu)ment output, it is clear that the two average values match. Here the ment output
agrees almost completely with the xml output. The columns MYAVG and OTTOAVG must however
agree with all other input lists. The program has the advantage of being very simple. But the student
still has to enter a lot of data. Using the example of o++o-mad, which has not yet played a big role in
Germany, we want to show that an extended o++o program can relieve us of much of the typing
work. This mad function is one of the simplest and clearest statistical functions, but it has not so nice

mathematical properties. Now we assume knowledge of the operations ++:, ..x and abs. By

from ..x to!nr a list of nr random numbers between from and to is generated. abs

calculates the absolute value.

Program 7.9.2: o++o Proof for the ++: Operation.
RANDOMNRl:= 1 ..x 10!10
Xl:= 1 ..x RANDOMNR!RANDOMNR
AVG:=Xl ++:
DISTANCE:=AVG - X abs
MYMAD:=DISTANCEl ++:
OTTOMAD:=Xl mad
gib AVG,MYMAD,OTTOMAD l

Result (tab)

AVG, MYMAD, OTTOMAD

2.8 1.44 1.44
4.16666666667 1.5 1.5
1.33333333333 0.444444444444 0.444444444444
1.5 0.5 0.5
5. 2.8 2.8
1. 0. 0.
3. 1.6 1.6
1. 0. 0.
1. 0. 0.
1. 0. 0.

We can easily extend the result table to a thousand output rows table by replacing the last
number 10 of the first row with 1000. We have extracted only the relevant columns with the gib
statement.

7.10 An example of deep digitization
Perhaps the following example makes the concept of deep digitization (TD) a little clearer: If addition,
multiplication, were not taught in school, today, for example, you would need different apps to solve
the following two problems.
An analogy to deep digitization from the field of "single data" operations

72

1. I have received a load of 36.57 tons of bulk material and will receive 31 more loads of
this type. How much bulk will I have in total?

2. I have a rectangular plot of land 32 m wide and 36.57 m long. What is the size of my
plot?

Everyone who has understood multiplication knows that it is one and the same problem that can be
solved very easily with a simple calculator. For today's digitization, this means that a TD could require
far fewer computer applications than a FD (flat digitization) and that the end users (managers,
politicians, ...) could master far more traditional applications (apps). After all, if the apps and
applications are based on one (e.g. o++o) data model, one can of course also standardize the
interfaces of these apps and such an application could replace many conventional FD applications.

73

8 Schemes and Structured Tables
All column names of a table are often considered as a schema of the table. Column names are

necessary to understand corresponding column values correctly. If we consider structured tables, it is

advantageous to enrich the column names with corresponding collection symbols; for example, l for

list.

NAME, BORNIN, (DEED, YEAR l) l
Otto the Great Old Saxony(De) Elected King of Germany 936
 The Hungarians defeated on the Lechfeld 955
 First emperor of the Holy Roman Empire 962
Otto von Moravia Moravia married Euphemia of Hungary 1086
Otto von Guericke MD(De) Inventor of the air pump 1649
 Hemisphere test for the emperor 1654
Otto von Bismarck Preussen(De) with carrot and stick policy 1871
 Ems Dispatch 1870
 First Chancellor of Germany 1871
Nicolaus Otto Taunus (De) Co-inventor of the gasoline engine 1876
OttoNormalVerbraucher De learns car driving 1960
 learns a programming language 2025

Tabment 8.1: ottos.tab

The above table (TABMENT=TABelle+dokuMENT) ottos.tab contains a list of 6 "persons" and for each

person a repeating group (DEED, YEAR l) - a list of (DEED, YEAR) pairs. Here a person has 4 columns,

but it is a triple (3-tuple). It is a structured tuple, struple for short (designation of Prof. Schek). The

first two components are of type TEXT and the third component is a list of subtuples (pairs) (2-

tuples). We will call the attribute values of a level segment. The NAME segment is the same as the

BORNIN segment.

The first NAME segment is:

NAME, BORNIN
Otto the Great Old Saxony(De)

The first DEED segment of Otto the Great reads:

DEED, YEAR
Elected King of Germany 936
The first person corresponds to the first struple; it is a NAME tuple (=BORNIN tuple):

NAME, BORN, (DEED, YEAR l)
Otto the Great Old Saxony(De) Elected King of Germany 936
 The Hungarians defeated on the Lechfeld 955
 First emperor of the Holy Roman Empire 962

Since the DEED tuples (= DEED sub-tuples) do not contain any other collections, a DEED segment is

the same as a DEED tuple. If we were to represent the above table by an ordinary flat table, every

(NAME, BORNIN) pair would have to appear in every row. That is, (Otto the Great, Old Saxony(De))

would have to appear 3 times (once for each DEED segment). Then, for example, it is not so easy to

count the persons in the table. With the above table, the corresponding program looks like this:

Program 8.1: How many ottos are contained in the table ? (How many elements (struples) does
the outermost collection contain?)
ottos.tab

++1

74

Here and in the following, we use these abbreviations and keywords:

aus: from

++1: count

gib: (corresponds to the SELECT of SQL)

avec: with (French) (for selection)

sans: without (for selection)

:= : extension (extends the specified table by a new (complex) column)

m: set: contains different elements

b: Bag: an element may occur more than once

l: list: the order of the elements is important

The result of program 8.1 is a simple table:

ZAHL
6

The schema of this table does not contain a collection symbol because the table contains exactly one

element. Similarly, we do not need a collection symbol in the following 2 queries. We do not want to

explain the following queries in detail. We use the queries to illustrate what different types of tables

there are and what schemas belong to them.

Program 8.2: How many persons and how many deeds are contained in the file ottos.tab?
ottos.tab
gib CNTPERSON,CNTDEED
 CNTPERSON:= NAME! ++1
 CNTDEED := DEED ! ++1

Result (tab)

CNTPERSON, CNTDEED

6 12

Program 8.3: Tell me the name of the person born in Saxony.
aus ottos.tab
avec Saxony in BORNIN
gib NAME

Result

NAME

Otto the Great

Program 8.4: Give me the name of a noble person.
aus ottos.tab
avec von in NAME
gib NAME

Result

NAME

Otto von Moravia

75

If keywords like "avec" and "in" are highlighted in color in the future o++o software, the second

program line will also be easier to read.

Here it would be better to output the names of all the nobles:

Program 8.5: Sort all noble names
aus ottos.tab
avec von in NAME
gib NAMEm
Result (tab)

NAMEl

Otto von Bismarck
Otto von Guericke
Otto von Moravia

To save space on the screen or paper, we can also arrange the elements of a list or other collection

horizontally:

Result (tabh)

NAMEl

"Otto von Bismarck" "Otto von Guericke" "Otto von Moravia"

Program 8.6: Count all deeds and all deeds of each century. Add to each century the
corresponding people.
aus ottos.tab
CENTURY:=YEAR div 100 +1
gib CNTDEED,(CENTURY,CNTDEED,NAMEm m)
 CNTDEED:= DEED ! ++1
Result (Table with 3 segment types: CNTDEED, (CENTURY, CNTDEED2) and NAME)

CNTDEED,(CENTURY,CNTDEED2,NAMEm m)

12 10 3 Otto the Great
 11 1 Otto von Moravia
 17 2 Otto von Guericke
 19 4 Nicolaus Otto
 Otto von Bismarck
 20 1 John Doe
 21 1 John Doe

Program 8.7: Count all the acts and the acts of each century with corresponding persons, where
for each act the corresponding person must appear (with duplicates).
aus ottos.tab
CENTURY:=YEAR div 100 +1
gib CNTDEED,(CENTURY,CNTDEED,NAMEb m)
 CNTDEED:= DEED ! ++1
Result (tab)

CNTDEED,(CENTURY,CNTDEED2, NAMEb m)

12 10 3 Otto the Great
 Otto the Great
 Otto the Great
 11 1 Otto von Moravia
 17 2 Otto von Guericke
 Otto von Guericke

76

 19 4 Nicolaus Otto
 Otto von Bismarck
 Otto von Bismarck
 Otto von Bismarck
 20 1 John Doe
 21 1 John Doe

Where b stands for bag (multiset). So far we have considered only tables with nested levels. But a

structured table may also contain "independent" collections:

NAME , RESIDENCEl, WOMANl, RULESOVERl l
Otto the Great Magdeburg Editha Saxony
 Memleben Adelheid Thuringia
 Bavaria
 Franconia
 Swabia
 Italy
 Bohemia
 Holland
 Lorraine
 Friesland
Charles IV Prague Margaret Bohemia
 Tangermünde Anna Silesia
 Anna Brandenburg
 Elizabeth Italy
 Hungary

Tabment 8.2: emperors.tab

In this table "Memleben" and "Otto the Great" are in the same relation to each other as "Adelheid"

and "Otto the Great". But this does not mean that "Adelheid" and "Memleben" are related to each

other although they are in the same row. Therefore the following restructuring is senseless.

Program 8.8: Query with empty result
aus emperors.tab
gib NAME,RESIDENCE,WIFE m
gib NAME,RESIDENCEm,WIFEm m is useful, however.

77

9 Tabment types (TTs) and structured documents
For structured tables and documents we use the name Tabment. Therefore we abbreviate the type

of a tabment with TT (Tabment Type). The TT completes the information given by a schema. It

specifies for each tag its schema. For example, the TT for the above table ottos.tab is:

TABMENT! OTTOS
OTTOS! NAME,BORNIN,(DEED,YEAR l)l
NAME BORNIN DEED! TEXT
YEAR! ZAHL
TEXT and ZAHL (number) are elementary types that need no further explanation. Each named

tabment is surrounded by a tag that is derived from the file name by omitting the type suffix.

Therefore, our first table can also be presented in document style or in a document style with inner

tables (ment or xml).

for example:

<OTTOS>
 <NAME>Otto the Great</NAME>
 <BORNIN>Altsaxony(De)</BORNIN>
 <DEED>Elected King of Germany</DEED>.
 <YEAR>936</YEAR>
 <DEED>Hungarians beaten on the Lechfeld</DEED>.
 <YEAR>955</YEAR>
 <DEED>First emperor of the Holy Roman Empire</DEED>
 <YEAR>962</YEAR>
 <NAME>Otto von Moravia</NAME>
 <BORNIN>Moravia</BORNIN>
 <DEED>married Euphemia of Hungary</DEED>
 <YEAR>1086</YEAR>
 <NAME>Otto von Guericke</NAME>
 <BORNIN>MD (De)</BORNIN>
 <DEED>Inventor of the air pump</DEED>.
 <YEAR>1649</YEAR>
 <DEED>Half ball attempt in front of the emperor</DEED>.
 <YEAR>1654</YEAR>
 <NAME>Otto von Bismarck</NAME>
 <BORNIN>Preussen(De)</BORNIN>
 <AT>with carrot and stick policy</DEED>.
 <YEAR>1871</YEAR>
 <DEED>Ems Dispatch</DEED>.
 <YEAR>1870</YEAR>
 <AT>First Chancellor of the Reich of Germany</DEED>.
 <YEAR>1871</YEAR>
 <NAME>Nicolaus Otto</NAME>
 <BORNIN>Taunus (De)</BORNIN>
 <DEED>Miter inventor of the gasoline engine</DEED>.
 <YEAR>1876</YEAR>
 <NAME>Otto Normal Consumer</NAME>
 <BORNIN>De</BORNIN>
 <DEED>learns to drive</DEED>
 <YEAR>1960</YEAR>
 <DEED>learns a programming language</DEED>.
 <YEAR>2025</YEAR>
</OTTOS>
Tabment 9.1: Table ottos.tab in XML document style

"Otto the Great" Old Saxony(De)

78

 "Elected King of Germany" 936
 "The Hungarians defeated on the Lechfeld" 955
 "First Emperor of the Holy Roman Empire" 962
"Otto of Moravia" Moravia
 "married Euphemia of Hungary" 1086
"Otto von Guericke" "MD (De)"
 "Inventor of the air pump" 1649
 "Hemisphere trial before the emperor" 1654
"Otto von Bismarck" Prussia(De)
 "with carrot and stick policy" 1871
 "Ems Dispatch" 1870
 "First Imperial Chancellor of Germany" 1871
"Nicolaus Otto" "Taunus (De)"
 "Co-inventor of the gasoline engine" 1876
"Otto Normalverbraucher" De
 "learns to drive" 1960
 "learns a programming language" 2025
Tabment 9.2: Table ottos.tab in hsq style

Let's look at parts of a small but real document: "Basic Law for the Federal Republic of Germany".

<META!
TABMENT ! BASICLAW
BASICLAW ! NR,TITLE,CONTENT l
NR ! ONR
TITLE ! TEXT
CONTENT ! TEXT
!META>
<BASICLAW>
 <NR>1</NR>
 <TITLE>The Fundamental Rights</TITLE>
 <CONTENT></CONTENT>
 <NR>1.1</NR>
 <TITLE>Human Dignity - Human Rights - Binding of Fundamental Rights</TITLE>
 <CONTENT></CONTENT>
 <NR>1.1.1</NR>
 <TITLE></TITLE>
 <CONTENT>The dignity of the human being is inviolable. To respect and protect it is the obligation
of all state power.</CONTENT>
 <NR>1.1.2</NR>
 <TITLE></TITLE>
 <CONTENT>The German people therefore profess inviolable and inalienable human rights as the basis
of every human community, peace and justice in the world.</CONTENT>
 <NR>1.1.3</NR>
 <TITLE></TITLE>
 <CONTENT>The following fundamental rights bind legislation, executive power and jurisdiction as
directly applicable law.</CONTENT>
 <NR>1.2</NR>
 <TITLE>Personal Freedom</TITLE>
 <CONTENT></CONTENT>
 <NR>1.2.1</NR>
 <TITLE></TITLE>
 <CONTENT>Everyone has the right to the free development of his personality, insofar as he is
 does not infringe the rights of others and does not violate the constitutional order or the
 Moral law violates.</CONTENT>
 <NR>1.2.2</NR>
 <TITLE></TITLE>
 <CONTENT>Everyone has the right to life and ...</CONTENT>
 <NR>1.14</NR>
 <TITLE>Property Inheritance Expropriation</TITLE>
 <CONTENT></CONTENT>
 <NR>1.14.1</NR>
 <TITLE></TITLE>
 <CONTENT>The property and inheritance rights are guaranteed. The content and limits are
 determined by the laws.</CONTENT>
 <NR>1.14.2</NR>
 <TITLE></TITLE>
 <CONTENT>Ownership obliges. Its use shall at the same time be for the public good.

79

 serve.</CONTENT>
 <NR>1.14.3</NR>
 <TITLE></TITLE>
 <CONTENT>Expropriation is permissible only for the public good. It may only be carried out by
 law or on the basis of a law regulating the type and extent of compensation.
 Compensation shall be paid after fair consideration of the interests of the general public
and the
 to be determined by the parties involved. In the event of a dispute, the amount of
compensation shall be determined by the
 Legal recourse before the ordinary courts open.</CONTENT>
 <NR>1.19</NR>
 <TITLE>Restriction of Fundamental Rights</TITLE>
 <CONTENT></CONTENT>
 <NR>1.19.1</NR>
 <TITLE></TITLE>
 <CONTENT>To the extent that_under_this_foundation_law a fundamental right is protected by law
...</CONTENT>
 <NR>2</NR>
 <TITLE>The Federal Government and the States</TITLE>
 <CONTENT></CONTENT>
 <NR>2.1</NR>
 <TITLE>Fundamentals of State Order, Right of Resistance</TITLE>
 <CONTENT></CONTENT>
 <NR>2.1.1</NR>
 <TITLE></TITLE>
 <CONTENT>The_Federal_Republic_of_Germany is a democratic and social federal state.</CONTENT>
 <NR>2.1.2</NR>
 <TITLE></TITLE>
 <CONTENT>All state power emanates from the people. It is exercised by the people in elections and
votes ...</CONTENT>
</BASICLAW>

Tabment 9.3: basiclaw1.ment

<META!
TABMENT! BASICLAW
BASICLAW! CHAPTERl
CHAPTER! KNR,KTITLE,ARTICLEl
ARTICLE! ANR,ATITLE,(PNR,PARAGRAPH l)
KNR ANR PNR! ZAHL
KTITLE ATITLE PARAGRAPH! TEXT
!META>
<BASICLAW>
 <CHAPTER>
 <KNR>1</KNR>
 <KTITLE>The Fundamental Rights</KTITLE>
 <ARTICLE>
 <ANR>1</ANR>
 <ATITLE>Human Dignity - Human Rights - Binding of Fundamental Rights</ATITLE>
 <PNR>1</PNR>
 <PARAGRAPH>The dignity of the human being is inviolable. To respect and protect it is the duty
of all_state_authority.</PARAGRAPH>
 <PNR>2</PNR>
 <PARAGRAPH>The German people therefore profess inviolable and inalienable human rights as the
basis of every human community, of peace and justice in the world.</PARAGRAPH>
 <PNR>3</PNR>
 <PARAGRAPH>The following fundamental rights bind legislation, executive power and jurisdiction
as directly applicable law.</PARAGRAPH>
 </ARTICLE>
 <ARTICLE>
 <ANR>2</ANR>
 <ATITLE>Personal Freedom</ATITLE>
 <PNR>1</PNR>
 <PARAGRAPH>Everyone has the right to the free development of his or her personality, insofar
as he or she is
 does not violate the rights of others and does not violate the constitutional_order or the
 Moral Law Violates.</PARAGRAPH>
 <PNR>2</PNR>
 <PARAGRAPH>Everyone has the right to life and ...</PARAGRAPH>
 </ARTICLE>
 <ARTICLE>
 <ANR>14</ANR>
 <ATITLE>Property Inheritance Expropriation</ATITLE>
 <PNR>1</PNR>
 <PARAGRAPH>The property and inheritance rights are guaranteed. The content and limits are
 determined by the laws.</PARAGRAPH>

80

 <PNR>2</PNR>
 <PARAGRAPH>Ownership obliges. Its use shall at the same time be for the public good.
 serve.</PARAGRAPH>
 <PNR>3</PNR>
 <PARAGRAPH>Eminent domain is permissible only for the public good. It may only be carried out
by
 law or on the basis of a law regulating the type and extent of compensation.
 Compensation shall be paid after fair_consideration_of the interests of the general public
and the
 to be determined by the parties involved. In the event of a dispute, the amount of
compensation shall be determined by the
 legal courts open to the ordinary courts.</PARAGRAPH>
 </ARTICLE>
 <ARTICLE>
 <ANR>19</ANR>
 <ATITLE>Restriction of Fundamental Rights</ATITLE>
 <PNR>1</PNR>
 <PARAGRAPH>So far as under this foundation law a fundamental right is established by law
...</PARAGRAPH>
 </ARTICLE>
 </CHAPTER>
 <CHAPTER>
 <KNR>2</KNR>
 <KTITLE>The Federal Government and the States</KTITLE>
 <ARTICLE>
 <ANR>20</ANR>
 <ATITLE>Fundamentals of State Order, Right of Resistance</ATITLE>
 <PNR>1</PNR>
 <PARAGRAPH>The Federal Republic of Germany is a democratic and social_Federal
State.</PARAGRAPH>
 <PNR>2</PNR>
 <PARAGRAPH>All state power emanates from the people. It is exercised by the people in
elections_and_votes ...</PARAGRAPH>
 </ARTICLE>
 </CHAPTER>
</BASICLAW>

Tabment 9.4 basiclaw2.ment

basiclaw1.ment and basiclaw2.ment contain the same information, yet differ significantly in the way

they are structured. The metadata of the second version is based on the designations of the original

basic law. Here a structuring depth of 3 is present by the terms CHAPTER, ARTICLE and PARAGRAPH,

which could be increased actually only by new names. The metadata from the first document, on the

other hand, can be used for any structured documents. Although there are only 3 "column names"

(NR, TITLE, CONTENT), the depth of "structuring" is unlimited.

Documents containing the "new line" character (return) are only conditionally suitable for tab and

hsq outputs. Structured documents are usually output as ment or xml. For (NR,TITLE,CONTENT l)

documents even the tabular web output is suitable. That the web output is advantageous for the

comparison of both document types above, shall be demonstrated now.

Program 9.1: Output a document in the form of two different tables.
basiclaw1.ment,basiclaw2.ment
Result (web)

81

82

Program 9.2: Calculate for each chapter the number of paragraphs twice.
aus basiclaw1.ment,basiclaw2.ment
KNR1:=NR nthzahl 1 at NR
PNR1:=NR nthzahl 3 leftat TITLE
gib KNR1,PCNT1 m,(KNR,PCNT m)
 PCNT1:=PNR1!++1
 PCNT :=PNR !++1
Result (tab)

KNR1,PCNT1 l,(KNR,PCNT l)

 1 9 1 9
 2 2 2 2

Program 9.3: Calculate twice the number of characters (letters) of each article.
basiclaw1.ment,basiclaw2.ment
ANR1:=NR nthzahl 1 text + "." + (NR nthzahl 2 text) onr
gib ANR1,CNT1 m, (ANR,CNT2 m)
 CNT1 :=CONTENT zil ++1! ++
 CNT2 :=PARAGRAPH zil ++1! ++ # zil creates list of Zi (characters)
Result (tab)

ANR1, CNT1 l, (ANR, CNT2 l)

1.1 366 1 367
1.2 250 2 263
1.14 672 14 667
1.19 88 19 81
2.1 171 20 171

Program 9.4: Calculate the number of characters and words of each article.
basiclaw1.ment
ANR1:=NR nthzahl 1 text + "." + (NR nthzahl 2 text) onr
gib ANR1,CNT1,CNT2 m
 CNT1 :=CONTENT zil ++1! ++
 CNT2 :=CONTENT cil ++1! ++ # cil generates list of ci (words)
Result (tab)

ANR1, CNT1, CNT2 l

1.1 366 57
1.2 250 41
1.14 672 106
1.19 88 13
2.1 171 26

Zi and Ci are Chinese words meaning character and word, respectively.

The example makes it clear that a teacher can easily count through the essays of a class in this way.

We can further see that queries to documents are not very different from queries to tables, since

documents can also be thought of as tables.

The functions described here could be useful for typical tasks of editorial offices or translation

agencies, among others.

83

Program 9.5: Give me Article 2 of the Basic Law.
aus basiclaw1.ment
avec NR subtext 1!3="1.2"
gib TITLE,CONTENT l
Result (ment):

TABMENT ! TABM
TABM ! TITLE,CONTENT l
TITLE ! TEXT
CONTENT ! TEXT
<TABM>
 <TITLE>Personal Freedom</TITLE>
 <CONTENT></CONTENT>
 <TITLE></TITLE>
 <CONTENT>Everyone has the right to the free development of his personality, insofar as he is
 does not infringe the rights of others and does not violate the constitutional order or the
 Moral law violates.</CONTENT>
 <TITLE></TITLE>
 <CONTENT>Everyone has the right to life and ...</CONTENT>
</TABM>

Program 9.6: Find an entire section with a specific word in the title.
aus basiclaw1.ment
avec expropriation in TITLE
gib NR
rename NR! NR0
L:=NR0 zil ++1
,basiclaw1.ment
avec NR subtext 1!L = NR0
gib NR,TITLE,CONTENT l
Result (ment):

TABMENT ! TABM
TABM ! NR,TITLE,CONTENT l
NR ! ONR
TITLE ! TEXT
CONTENT ! TEXT
<TABM>
 <NR>1.14</NR>
 <TITLE>Property Inheritance Expropriation</TITLE>
 <CONTENT></CONTENT>
 <NR>1.14.1</NR>
 <TITLE></TITLE>
 <CONTENT>The property and inheritance rights are guaranteed. The content and limits are
 determined by the laws.</CONTENT>
 <NR>1.14.2</NR>
 <TITLE></TITLE>
 <CONTENT>Ownership obliges. Its use shall at the same time be for the public good.
 serve.</CONTENT>
 <NR>1.14.3</NR>
 <TITLE></TITLE>
 <CONTENT>Expropriation is permissible only for the public good. It may only be carried out by
 law or on the basis of a law regulating the type and extent of compensation.
 Compensation shall be paid after fair consideration of the interests of the general public
and the
 to be determined by the parties involved. In the event of a dispute, the amount of
compensation shall be determined by the
 Legal recourse before the ordinary courts open.</CONTENT>
</TABM>

We consider another document with TT. It uses alternatives through (|). It comes from the XQuery

use cases (C+07).

84

<META!
TABMENT! REPORT1
REPORT1! SECTIONl
SECTION! TITLE,CONTENT
CONTENT! TEXT|NARCOSIS|PREPARATION|CUT|ACTION|OBSERVATION l
PREPARATION! TEXT|ACTION l
CUT! TEXT|GEOGRAPHY|INSTRUMENT l
ACTION! TEXT|INSTRUMENT l
TITLE NARCOSIS OBSERVATION GEOGRAPHY INSTRUMENT! TEXT
!META>
<REPORT1>
 <SECTION>
 <TITLE>Procedure</TITLE>
 <CONTENT>
 The patient was taken to the operating room, where she was placed in the supine position and
<NARCOSIS> induced under general anesthesia. </NARCOSIS>
<PREPARATION>
<ACTION>A Foley catheter was placed to decompress the bladder</ACTION> and the abdomen was then
sterilely prepped and draped.
</PREPARATION>
<CUT>
A curved incision was made
<GEOGRAPHY> in the center line immediately infraumbilical </GEOGRAPHY>
 and the subcutaneous tissue was divided
 <INSTRUMENT> Use electrocautery. </INSTRUMENT>
 </CUT>
 The fascia was identified and
 <ACTION> # 2 0 Maxon seams were placed on each side of the centerline.
 </ACTION>
 <CUT>
 The fascia was shared with
<INSTRUMENT> electrocautery </INSTRUMENT>
 and the peritoneum entered.
</CUT>
 <OBSERVATION>The small intestine was identified.</OBSERVATION>
 and
 <ACTION> the <INSTRUMENT>Hasson trocar</INSTRUMENT>
 was placed under direct visualization.
 </ACTION>
 <ACTION>The <INSTRUMENT>Trocar</INSTRUMENT>using the
 Sutures was attached to the fascia.
</ACTION>
</CONTENT>
</SECTION>
</REPORT1>

Tabment 9.5: report1.ment

In report1.xml the CONTENT is a list of elements, where each element is either of type TEXT,

ANESTESIA, PREPARATION, CUT, ACTION or OBSERVATION. In the above document, the first element

is simple TEXT, the second is of type ANESTESIA, the third is of type PREPARATION, Since our

report was tagged in the above way, the following example queries are possible.

For example:

Program 9.6: What instruments were used in the second cut?
aus report1.ment
gib CUTl
avec CUT pos = 2
gib INSTRUMENTl
Result (tab)

INSTRUMENTl

electrocautery

Program 9.7: What are the first two instruments used?
aus report1.ment
gib INSTRUMENTl

85

avec INSTRUMENT pos < 3
Result (tab)

INSTRUMENTl

Use electrocautery.
electrocautery

86

10 A university database
We consider a non-relational database consisting of one flat and two structured tables:

FACS! FAC,DEAN,BUDGET,STUDCAPACITY m
STUDENTS! STID,NAME,LOCATION?,STIP,FAC,(COURSE,MARK m),(PROJ,HOURS m) m
COURSES! COURSE,TEACHER,(ISBN,TITLE m)m
The underlined column names are keys. The last two tables can be represented by the following 5

flat relations:

student1: STID,NAME,LOCATION?,STIP,FAC m
exam1: STID,COURSE,MARK m
projects1: STID,PROJ,HOURS m
course1: COURSE,TEACHER m
course_books1: COURSE,ISBN,TITLE m

FAC, DEAN, BUDGET, STUDCAPACITY m
Art Sitte 2'000 600
Infor Reichel 10'000 500
Math Dassow 1'000 200
Philo Hegel 1'000 10
Sport Streich 8'000 150

Tabment 10.1: facs.tab

STID,NAME, LOC?, STIP,FAC, (COURSE, MARK m),(PROJ, HOURS m)m
1111 Ernst Oehna 500 Math Algebra 1 Fritz 4
 Logic 2 Otto 2
 History 1
2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5
 Databases 1 Ming 4
 Otto 1 Otto 6
3333 Clara Oehna 450 Infor Databases 1
 OCaml 2
4444 Ulrike 400 Art Monet 10
5555 Käthe Gerwisch 600 Art Repin 1 Monet 20
 Apel 1
6666 Claudia Berlin 600 Sport Psycho 2 Matthes 8
 Ski 1 Witt 12
Tabment 10.2: students.tab

COURSE, TEACHER,(ISBN, TITLE m)m
Algebra Reichel 0138-3019 Structural Induction on Partial Alg.
 3-8244-2099-6 Structured tables
Databases Saake 0-321-31256-2 Database Systems an Application
 0-7167-8069-0 Principles of Database Systems
Otto Benecke 0-7167-8069-0 Principles of Database Systems
 3-8244-2099-6 Structured tables

Tabment 10.3: courses.tab

STID,NAME, LOC?, STIP,FAC m
1111 Ernst Oehna 500 Math
2222 Sophia Berlin 400 Infor
3333 Clara Oehna 450 Infor
4444 Ulrike 400 Art
5555 Käthe Gerwisch 600 Art
6666 Claudia Berlin 600 Sport
Tabment 10.4: students1.tab

87

STID,COURSE, MARK m
1111 Algebra 1
1111 History 1
1111 Logic 2
2222 Algebra 3
2222 Databases 1
2222 Otto 1
3333 Databases 1
3333 OCaml 2
5555 Apel 1
5555 Repin 1
6666 Psycho 2
6666 Ski 1
Tabment 10.5: examen1.tab

STID,PROJ, HOURS m
1111 Fritz 4
1111 Otto 2
2222 Ghandi 5
2222 Ming 4
2222 Otto 6
4444 Monet 10
5555 Monet 20
6666 Matthes 8
6666 Witt 12
Tabment 10.6: projects1.tab

The above tables and the following programs refer to tab files, although we keep in mind that the

specified tables could be database tables.

10.1 Selection (avec sans)
A condition specifies tuples or subtuples. In an avec clause the specified tuples form the result, in a

sans clause the specified tuples are omitted.

Consequently, the schema and the TT of the considered tabment are not changed by a selection.

Column names or tags are written in upper case in an o++o program. They must start with a letter or

the character "_". A WORT (word) that is not enclosed by "-symbols must therefore use a lowercase

letter. TEXT may contain spaces; however, they must then be enclosed in "-symbols.

Program 10.1.1: Find all students from Berlin and Oehna with bad results..
aus students.tab
avec LOC in "Berlin Oehna" # selected students
avec MARK > 2 # selects exams and students
Result (tab)

STID,NAME , LOC? ,STIP,FAC ,(COURSE ,MARK m), (PROJ , HOURS m) m

2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5
 Ming 4
 Otto 6

Intermediate result after the first condition
1111 Ernst Oehna 500 Math Algebra 1 Fritz 4
 History 1 Otto 2
 Logic 2
2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5

88

 Databases 1 Ming 4
 Otto 1 Otto 6
3333 Clara Oehna 450 Infor Databases 1
 OCaml 2
6666 Claudia Berlin 600 Sport Psycho 2 Matthes 8
 Ski 1 Witt 12

The second "condition" is applied to the result of the first condition. The second "condition" is an

abbreviation for the following two conditions:

avec STID! MARK>2 # Selection STID tuple (MARK>2 must exist)
avec COURSE! MARK>2 # Selection COURSE tuple

The first of these two conditions expresses that we select (complete) student tuples for which there

exists a (COURSE,MARK) subtuple with a grade of 3 or higher. We do not write the existence

quantifier because there is exactly one EXIST quantifier behind each condition. "#" is the comment

symbol. It can be used to describe the meaning of a program step. Also, lines can be commented out

to indicate intermediate results.

Program 10.1.2: For all students from Oehna and Berlin, indicate all results with 3 or worse.
aus students.tab
avec LOC in "Berlin Oehna" # equivalent: LOC in Berlin Oehna
avec COURSE! MARK>2 # selects exams and not students
gib NAME,LOC,(COURSE,MARK m) b
Result (tab)

NAME , LOC , (COURSE, MARK m) b

Clara Oehna
Claudia Berlin
Ernst Oehna
Sophia Berlin Algebra 3

After applying the two conditions, the restructuring (see section 10.3) was applied. Therefore, the

scheme of the result has changed and the data has been sorted.

Program 10.1.3: Find all students from Oehna and Berlin with a grade of 3 or worse, with all
scores.
aus students.tab
avec LOC in "Berlin Oehna"
avec STID! MARK>2 # selects only students and not exams
gib NAME,LOC,(COURSE,MARK m)b

Result (tab)

NAME , LOC , (COURSE, MARK m) b

Sophia Berlin Algebra 3
 Databases 1
 Otto 1

Program 10.1.4: Find all students who have only a grade of 1 and at least one grade of 1..
aus students.tab
avec NOTEm = {1} # { } are set brackets
Result (tab)

89

STID,NAME , LOC? ,STIP,FAC ,(COURSE,MARK m),(PROJ ,HOURS m) m

5555 Käthe Gerwisch 600 Art Apel 1 Monet 20
 Repin 1

For the evaluation of the condition, for each student the list of his grades is transformed into a set.

Thus, Ernst's set {1 2 1} = {1 2} and Kathe's set {1 1} is equal to {1}. Two sets are equal if every

element of the left side is also on the right side and every element of the right side is on the left side.

In other words, two sets M1 and M2 are equal if 'M1 inmath M2 & M2 inmath M1' holds. If we want

to have all students with exactly two marks 1, then we can use multisets: MARKb = {{1 1}} (b

abbreviates Bag). If the order of the notes is also important, then we can take lists: MARKl = [1 2 1],

...

Program 10.1.5: Find all students who got an 1 in the algebra course..
aus students.tab
avec STID! COURSE=Algebra & MARK=1
gib STID,NAME,(COURSE,MARK m)m

Result (tab)

STID,NAME ,(COURSE, MARK m) m

1111 Ernst Algebra 1
 History 1
 Logic 2

Program 10.1.6: Find all students who have taken an algebra course and have an 1 (not necessarily
in the same course)..
aus students.tab
avec STID! COURSE=Algebra
avec STID! MARK=1
gib STID,NAME,(COURSE,MARK m)m
Result (tab)

STID,NAME , (COURSE , MARK m) m

1111 Ernst Algebra 1
 History 1
 Logic 2
2222 Sophia Algebra 3
 Databases 1
 Otto 1

Program 10.1.7: Find all students who already have exams in Algebra and Databases..
aus students.tab
avec STID! COURSE=Algebra
avec STID! COURSE=Databases
avec Algebra Databases in COURSEm is equivalent to both selections
Result (tab)

STID,NAME , LOC? ,STIP,FAC , (COURSE , MARK m),(PROJ , HOURS m) m

2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5
 Databases 1 Ming 4
 Otto 1 Otto 6
Intermediate result after the first condition
1111 Ernst Oehna 500 Math Algebra 1 Fritz 4

90

 History 1 Otto 2
 Logic 2
2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5
 Databases 1 Ming 4
 Otto 1 Otto 6
If we would connect both conditions by & (and), this condition "contains" only one EXIST quantifier,

of the kind that no subtuple exists that satisfies both subconditions simultaneously. The result would

be empty in any case.

Program 10.1.8: For each student who has completed Algebra, indicate all other courses they have
completed.
aus students.tab
avec STID! COURSE=Algebra # selects students
sans COURSE! COURSE=Algebra # chooses exam
gib NAME,COURSEb m

Result (tabh)

NAME, COURSEb m

Ernst History Logic
Sophia Databases Otto

Program 10.1.9: Find all students in which the word Otto occurs
aus students.tab
avec Otto
Result (tab)

STID,NAME , LOC? ,STIP,FAC , (COURSE ,MARK m),(PROJ , HOURS m) m

1111 Ernst Oehna 500 Math Algebra 1 Fritz 4
 History 1 Otto 2
 Logic 2
2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5
 Databases 1 Ming 4
 Otto 1 Otto 6

Program 10.1.10: Print from all tuples of the university database (to which I have access) the
tuples containing the word Apel.
aus students.tab,courses.tab
avec Apel
Result (xml)

<TABM>
 <STUDENTS>
 <STID>5555</STID>
 <NAME>Käthe</NAME>
 <Place>Gerwisch</Place>
 <STIP>600</STIP>
 <FAC>Art</FAC>
 <COURSE>Apel</COURSE>.
 <MARK>1</MARK>
 <COURSE>Repin</COURSE>
 <MARK>1</MARK>

91

 <PROJ>Monet</PROJ>
 <HOURS>20</HOURS>
 </STUDENTS>
 <COURSES/>
</TABM>

So far in this section we have only considered "selection by content", but almost the same

importance has "selection by position". This is not only useful for lists, but can also be used in the

context of "relational applications". We only consider two examples here.

Program 10.1.11: Give for each student from Oehna with exams, the last exam.
aus students.tab
avec LOC=Oehna
avec MARK pos- = 1
gib STID,NAME,(COURSE,MARK m)m
Result (tab)

STID,NAME,(COURSE,MARK m) m

1111 Ernst Logic 2
3333 Clara OCaml 2
The pos (pos-) function returns the position number (position number backwards) of the (sub-) item

in the corresponding set. Therefore, MARK pos is the same as COURSE pos.

Program 10.1.12: Give the 2 best exams for the 3 best students. We omit Ulrike because we
cannot calculate an average for her. She has no grades yet.
aus students.tab
sans NAME=Ulrike
avec MARK=MARK
gib AVGM,NAME,FAC,(MARK,COURSE m)m
 AVGM:= MARK! ++:
avec NAME pos < 4
avec MARK pos < 3
rnd 2
Result (tab)

AVGM,NAME ,FAC , (MARK,COURSE m) m

1.00 Käthe Art 1 Apel
 1 Repin
1.33 Ernst Math 1 Algebra
 1 History
1.50 Clara Infor 1 Databases
 2 OCaml
Here it is sufficient to know that by the gib clause the students are sorted by AVGM, the exams are

sorted by MARK and AVGM is the average for each student. The gib clause is explained in more detail

in section 10.3.

Although the following query does not require avec or sans, primo and ultimo are still selections.

ultimo selects the last element from each collection. These operations can be used to quickly get a

first impression of the structure and content of a tab.

Program 10.1.13: Find the last element of each collection of the student file.
students.tab ultimo
Result (tab)

92

STID ,NAME ,LOC? ,STIP ,FAC ,(COURSE ,MARK m),(PROJ ,HOURS m) m

6666 Claudia Berlin 600 Sport Ski 1 Witt 12

Program 10.1.14: Find the students with the highest scholarships.
aus students.tab
STIPMAX:=STIPl max # a new column with a value is created
avec STIP=STIPMAX
Result (tab)

STIPMAX ,(STID ,NAME ,LOC? ,STIP ,FAC ,(COURSE ,MARK m),(PROJ ,HOURS m) m)

600 5555 Käthe Gerwisch 600 Art Apel 1 Monet 20
 Repin 1
 6666 Claudia Berlin 600 Sport Psycho 2 Matthes 8
 Ski 1 Witt 12

10.2 Calculations (:=)
Program 10.2.1: Calculate the gross values of several prices.
3.18 55.88 17.90 * 1.19
Result (hsqh and tabh)

PZAHLl
3.7842 66.4972 21.301

Program 10.2.2: Calculate the gross values of several prices and leave the entered values in the
output.
NETl:=3.18 55.88 17.90
GROSS:=NET*1.19
Result (tab)

NET, GROSS l

 3.18 3.7842
55.88 66.4972
17.9 21.301

Program 10.2.3: Calculate the gross values of several prices.

3.18 55.88 17.90 +% 19
Result (tabh)

PZAHLl

3.7842 66.4972 21.301

Program 10.2.4: Convert all net prices of a small table into gross prices..
<TAB!
ARTICLE, PRICE l
OttoRAMDB 500
OttoWiki 10
OttoCalc 20
!TAB>
+% 19
Result

93

ARTICLE , PRICE l

OttoRAMDB 595.
OttoWiki 11.9
OttoCalc 23.8
19% is added to each value in the table. Text values are not changed by arithmetic operations with

numbers.

Program 10.2.5: Calculate the gross value of each item and the sum of all gross values.
<TAB!
ARTICLE, PRICE,CNT m
OttoRAMDB 500 20
OttoWiki 10 200
OttoCalc 20 4000
!TAB>
TOTAL:=PRICE*CNT +% 19
TOTALSUM:=TOTALl ++
Result

TOTALSUM,(ARTICLE ,PRICE,CNT, TOTAL m)

 109480. OttoCalc 20 4000 95200.
 OttoRAMDB 500 20 11900.
 OttoWiki 10 200 2380.

Program 10.2.6: Report each computer science student's stipend in dollars..
aus students.tab
avec FAC=Infor
DOL:=STIP*1.02
Result

STID,NAME , LOC? ,STIP,FAC , DOL , (COURSE , MARK m),(PROJ , HOURS m) m

2222 Sophia Berlin 400 Infor 408. Algebra 3 Ghandi 5
 Databases 1 Ming 4
 Otto 1 Otto 6
3333 Clara Oehna 450 Infor 459. Databases 1
 OCaml 2

Program 10.2.7: Pay each student 100 euros for each of their projects..
aus students.tab
BONUS:= PROJl ++1 *100
gib STID,NAME,BONUS m
Result

STID,NAME, BONUS m

1111 Ernst 200
2222 Sophia 300
3333 Clara 0
4444 Ulrike 100
5555 Käthe 100
6666 Claudia 200

Program 10.2.8: Pay each Oehna student an additional bonus based on their grade point average..
aus students.tab
avec LOC=Oehna
AVG1:= MARKl ++:
BONUS3:=1000 : AVG1

94

gib STID,NAME,AVG1,BONUS3 m
rnd 2
Result

STID,NAME ,AVG1,BONUS3 m

1111 Ernst 1.33 750.00
3333 Clara 1.50 666.67
With the help of rnd (round) every value of a table is rounded to 2 digits after point (dot). For texts

the value remains unchanged again.

Program 10.2.9: The students of the math faculty get a bonus of 900 euros, the computer
science of 800 euros and all others get 700 euros..
aus students.tab
BONUS:= 900 if FAC=Math !
 800 if FAC=Infor!
 700
gib STID,NAME,FAC, BONUS m
Result

STID, NAME , FAC , BONUS m

1111 Ernst Math 900
2222 Sophia Infor 800
3333 Clara Infor 800
4444 Ulrike Art 700
5555 Käthe Art 700
6666 Claudia Sport 700

Program 10.2.10: Calculate the BMI (body mass index) for each weight of each person
<TAB!
NAME, LENGTH, (AGE, WEIGHT l)l
Klaus 1.68 18 61
 30 65
 56 80
 61 75
Kathi 1.70 18 55
 40 70
!TAB>
BMI:= WEIGHT : LENGTH : LENGTH
rnd 2
Result (tab)

NAME ,LENGTH, (AGE, WEIGHT, BMI l) l

Klaus 1.68 18 61 21.61
 30 65 23.03
 56 80 28.34
 61 75 26.57
Kathi 1.70 18 55 19.03
 40 70 24.22
Note that the given formula is applied not only to the rows where a length is written, but also to the

following rows. This is possible because the table has a certain scheme and our system can

understand the scheme.

95

10.3 Restructuring (gib)
The restructuring operation (stroke) allows to restructure any tabment into another arbitrary

tabment only by specifying the scheme or the TT of the target tabment. Additionally, aggregations,

elimination of duplicates, union, sorting and certain joins can be realized.

Program 10.3.1: Illustrate the collection symbols
aus students.tab
gib FACm,FACb,FACl,FACm-,FACb-,FACl-,FAC?
Result

FACm ,FACb ,FACl ,FACm- ,FACb- ,FACl- ,FAC?

Art Art Math Sport Sport Sport Math
Infor Art Infor Math Math Art
Math Infor Infor Infor Infor Art
Sport Infor Art Art Infor Infor
 Math Art Art Infor
 Sport Sport Art Math
The STID segments (type: (STID, NAME, LOCATION?, STIP, FAC)) are inserted one after another into
each of the given FAC collections. COURSE and PROJ segments are ignored. For clarity purposes, we
have kept the collection symbols of the gib clause.

Program 10.3.2: Sort students by FAC and NAME.
aus students.tab
gib FAC,NAMEb m
Result (tabh)

FAC, NAMEb m

Art Käthe
 Ulrike
Infor Clara
 Sophia
Math Ernst
Sport Claudia
STID segments are inserted first into the FAC level and then deeper into the NAME level, segment by

segment. COURSE and PROJ segments are not touched anymore.

Program 10.3.3: Sort students by FAC and NAME, resulting in a flat table
aus students.tab
gib FAC,NAME m
Result (tab)

FAC , NAME m

Art Käthe
Art Ulrike
Infor Clara
Infor Sophia
Math Ernst
Sport Claudia
If we replace m with b, the result elements do not change.

Program 10.3.4: Sort the faculties downwards by BUDGET and secondly by
Student Capacity.
aus facs.tab
gib BUDGET,STUDCAPACITY,FAC m-
Result (tab)

BUDGET,STUDCAPACITY,FAC m-

96

 10000 500 Infor
 8000 150 Sport
 2000 600 Art
 1000 200 Math
 1000 10 Philo

Program 10.3.5: Sort the faculties by budget and additionally by student capacity. (two
independent sortings of one table).
aus facs.tab
gib BUDGET,FAC m-,(STUDCAPACITY,FAC m-)
Result (tab)

BUDGET,FAC m-,(STUDCAPACITY,FAC m-)

10000 Infor 600 Art
 8000 Sport 500 Infor
 2000 Art 200 Math
 1000 Philo 150 Sport
 000 Math 10 Philo

Program 10.3.6: Pack each student's exam data by department.. (Re-group already grouped data).
aus students.tab
gib FAC,(COURSE,MARK b)m

Result (tab)

FAC ,(COURSE , MARK b) m
Art Apel 1
 Repin 1
Infor Algebra 3
 Databases 1
 Databases 1
 OCaml 2
 Otto 1
Math Algebra 1
 History 1
 Logic 2
Sport Psycho 2
 Ski 1
Here the STID segments are inserted into the FAC level. They cannot be inserted deeper because they
contain neither COURSE nor MARK values. The corresponding exams bags are then initially always
empty. Then each COURSE segment ((COURSE, MARK) pair) is extended by its parent STID segment.
These extended segments can be inserted step by step into the corresponding bgs. The extended
segment has the type: (STID, NAME, LOC?, STIP, FAC, COURSE, MARK) PROJ segments are not
needed.

Program 10.3.7: (Special selection with gib clause) Give all students, for which an LOC entry exists,
with this entry. Give additionally the given collection for comparison purposes.
aus students.tab
gib NAME,LOC m,(NAME,LOC? m)
Result (tab)

NAME , LOC m, (NAME , LOC? m)

Clara Oehna Clara Oehna
Claudia Berlin Claudia Berlin
Ernst Oehna Ernst Oehna

97

Käthe Gerwisch Käthe Gerwisch
Sophia Berlin Sophia Berlin
 Ulrike
In the first set, the user requests complete pairs. Since no pair exists for Ulrike, she cannot appear in
the first result.

Program 10.3.8: (Selection with gib clause only.) Specify all students with non-empty exam
collections.
aus students.tab
gib STID,NAME,FAC,COURSE,MARK m
gib STID,NAME,FAC,(COURSE,MARK m)m

Result (tab)

STID, NAME , FAC ,(COURSE , MARK m) m

1111 Ernst Math Algebra 1
 History 1
 Logic 2
2222 Sophia Infor Algebra 3
 Databases 1
 Otto 1
3333 Clara Infor Databases 1
 OCaml 2
5555 Käthe Art Apel 1
 Repin 1
6666 Claudia Sport Psycho 2
 Ski 1
Intermediate result after the first gib clause:

1111 Ernst Math Algebra 1
1111 Ernst Math History 1
1111 Ernst Math Logic 2
2222 Sophia Infor Algebra 3
2222 Sophia Infor Databases 1
2222 Sophia Infor Otto 1
3333 Clara Infor Databases 1
3333 Clara Infor OCaml 2
5555 Käthe Art Apel 1
5555 Käthe Art Repin 1
6666 Claudia Sport Psycho 2
6666 Claudia Sport Ski 1
To get the intermediate result, STID segments are tried to be inserted first. This is not possible
because there is no exams-data on this level. Then again, each COURSE segment is extended by its
first level parent data. This data is inserted exam by exam and student by student.

Program 10.3.9: For each name, output the "first" MARK entry or "null value" if no check entry is
present. Print the other collections for comparison purposes.
aus students.tab
gib (NAME,MARK? m),(NAME,MARK m),(NAME,MARK b),(NAME,MARKb m)
Result (tabh)

NAME, MARK? m, (NAME, MARK m), (NAME, MARK b), (NAME, MARKb m)

Clara 1 Clara 1 Clara 1 Clara 1 2
Claudia 2 Clara 2 Clara 2 Claudia 1 2

98

Ernst 1 Claudia 1 Claudia 1 Ernst 1 1 2
Käthe 1 Claudia 2 Claudia 2 Käthe 1 1
Sophia 3 Ernst 1 Ernst 1 Sophia 1 1 3
Ulrike Ernst 2 Ernst 1 Ulrike
 Käthe 1 Ernst 2
 Sophia 1 Käthe 1
 Sophia 3 Käthe 1
 Sophia 1
 Sophia 1
 Sophia 3
STID segments can be inserted in the first and last collection, since only names are required.

Program 10.3.10: (Restructuring) Reverse the given structuring. I.e., swap COURSE and NAME.
aus students.tab
gib COURSE,(NAME,MARK b)m

Result (tab)

COURSE , (NAME , MARK b) m

Algebra Ernst 1
 Sophia 3
Apel Käthe 1
Databases Clara 1
 Sophia 1
History Ernst 1
Logic Ernst 2
OCaml Clara 2
Otto Sophia 1
Psycho Claudia 2
Repin Käthe 1
Ski Claudia 1

Here, an attempt is first made to insert the STID segments. Since no COURSE attribute exists, they
cannot be inserted. Therefore, the extended COURSE segments are inserted first at the COURSE level
and then at the NAME level.

Program 10.3.11: (Restructuring with additional tags) Reverse the given structuring by changing
COURSE from inner to outer collection and NAME from outer to inner. Create additional tuple and
sub-tuple tags.
aus students.tab
gib COURSES
 COURSES = COURSETUPLEm
 COURSETUPLE = COURSE,EXAMSTUPLEb
 EXAMSTUPLE = NAME,MARK

Result (ment)

<COURSES>
 <COURSETUPLE>
 <COURSE>Algebra</COURSE>
 <EXAMSTUPLE>
 <NAME>Ernst</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 <EXAMSTUPLE>
 <NAME>Sophia</NAME>
 <MARK>3</MARK>

99

 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>Apel</COURSE>
 <EXAMSTUPLE>
 <NAME>Käthe</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>Databases</COURSE>
 <EXAMSTUPLE>
 <NAME>Clara</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 <EXAMSTUPLE>
 <NAME>Sophia</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>History</COURSE>
 <EXAMSTUPLE>
 <NAME>Ernst</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>Logic</COURSE>
 <EXAMSTUPLE>
 <NAME>Ernst</NAME>
 <MARK>2</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>OCaml</COURSE>
 <EXAMSTUPLE>
 <NAME>Clara</NAME>
 <MARK>2</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>Otto</COURSE>
 <EXAMSTUPLE>
 <NAME>Sophia</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>Psycho</COURSE>
 <EXAMSTUPLE>
 <NAME>Claudia</NAME>
 <MARK>2</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>

100

 <COURSETUPLE>
 <COURSE>Repin</COURSE>
 <EXAMSTUPLE>
 <NAME>Käthe</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
 <COURSETUPLE>
 <COURSE>Ski</COURSE>
 <EXAMSTUPLE>
 <NAME>Claudia</NAME>
 <MARK>1</MARK>
 </EXAMSTUPLE>
 </COURSETUPLE>
</COURSES>
Now we want to illustrate the set-theoretic operations union, intersection, and set-difference. Since
the STID column in students.tab is already a union, we illustrate the union with the files exams1 and
projects1.

Program 10.3.12: Construct the union of two files, where each value of each file should appear in
the result
aus examen1.tab,projects1.tab # a pair of tables
gib STIDb
Result (tabh, width 50))

STIDb

1111 1111 1111 1111 1111 1111 2222 2222 2222 2222
2222 2222 3333 3333 3333 3333 5555 5555 5555 5555
6666 6666 6666 6666
If we replace b with m in the gib statement, duplicates are eliminated.
Result
STIDl
1111 2222 3333 5555 6666
If we want to know from which file each STID comes from, we can add corresponding information

aus examen1.tab,projects1.tab # a pair of tables
gib STID,COURSE?,PROJ? b
Result
STID,COURSE?, PROJ? b
1111 Fritz
1111 Otto
1111 Algebra
1111 History
1111 Logic
2222 Ghandi
2222 Ming
2222 Otto
2222 Algebra
2222 Databases
2222 Otto
3333 Databases
3333 OCaml
4444 Monet
5555 Monet
5555 Apel

101

5555 Repin
6666 Matthes
6666 Witt
6666 Psycho
6666 Ski

Program 10.3.13: Construct the intersection of two files with different schemas.
aus exams1.tab,projects1.tab
gib STID,COURSE?,PROJ? m
gib STID,COURSE,PROJ m
This restructuring can also be realized through selections
gib STIDm
Result (tabh, width 50))

STIDm
1111 2222 5555 6666
Intermediate result after the first gib statement

STID, COURSE?, PROJ? m
1111 Algebra Fritz
2222 Algebra Ghandi
3333 Databases
4444 Monet
5555 Apel Monet
6666 Psycho Matthes
Program 10.3.14: Set difference: Specify all STIDs of examen1.tab that are not contained in
projekte1.tab.
aus exams1.tab
rename STID ! STUDID
,projects1.tab # in turn results in a tuple (pair) of tables
sans STUDID in STIDm
gib STUDIDm
Result (tab)

STUDIDm

3333

Program 10.3.15: like 10.3.14, but with nested query
aus exams1.tab
sans STID in begin projects1.tab;; gib STIDm end
gib STIDm
Result (tab)

STUDIDm

3333

Program 10.3.16: (Grouping with Aggregation) Calculate the number of students and the number
for each faculty. Sort the students by FAC and NAME.
aus students.tab
gib CNT,(FAC,CNT,(NAME,STID b)m)
 CNT:= STID! ++1
Result (tab)

CNT, FAC , CNT2, (NAME , STID b) m

6 Art 2 Käthe 5555
 Ulrike 4444

102

 Infor 2 Clara 3333
 Sophia 2222
 Math 1 Ernst 1111
 Sport 1 Claudia 6666

Program 10.3.17: (Restructuring with Aggregation) Give the total of all scholarships and the total
for each course. Sort the records by course.
aus students.tab
gib SU,(COURSE,SU m)
 SU:= STIP! ++
Result (tab)

SU ,(COURSE , SU2 m)

2950 Algebra 900
 Apel 600
 Databases 850
 History 500
 Logic 500
 OCaml 450
 Otto 400
 Psycho 600
 Repin 600
 Ski 600
It is interesting to note here that the ++ of the inner SU values is generally larger than the outer SU
value. This is due to the fact that a particular course usually occurs in more than one student record.

Program 10.3.18: Search the name of the student with ID 2222
aus students.tab
avec STID = 2222
gib NAME
Result (tab)

NAME

Sophia

Program 10.3.19: Divide the students of the two faculties of computer science and art into two
independent tables.
aus students.tab
STIDINFOR:= STID if FAC=Infor
STIDART := STID if FAC=Art
gib STIDINFOR,NAME,LOC? m,(STIDART,NAME,LOC? m)
Result (tab)

STIDINFOR, NAME, LOC? m, (STIDART, NAME, LOC? m)

2222 Sophia Berlin 4444 Ulrike
3333 Clara Oehna 5555 Käthe Gerwisch

The concept of hierarchical path is important for all operations. Its definition is based on "narrow"
schemes. All collection symbols except '?' are real collection symbols.
A schema s is narrow if for any 2 real collection symbols c and c' holds, either c is contained in c' or c'
is contained in c. Fields f1 and f2 of a schema s are on a hierarchical path (HP for short) with respect
to s if the schema formed by forgetting all fields except f1and f2 is narrow.
X,Ym,Zm m is not narrow, but X,Y?,Z? m is. PROJ and COURSE are in
NAME, (COURSE,MARK m),(PROJ,HOURS m)m, not on a hierarchical path; unlike PROJm and COURSE.
This is visible in the graphical representation of the schema.

103

m
|

(NAME, m, m)
 | |

 (COURSE,MARK) (PROJ,HOURS)

Program 10.3.19: Put simply two fields that are not on one HP onto one HP
aus students.tab
gib COURSE,PROJ m # in any case empty
Result (tabh)

COURSE, PROJ l

Program 10.3.20: Sort and group the students, who have taken an Algebra COURSE by their
corresponding grades and sort them by name and print all their projects.
aus students.tab
avec COURSE=Algebra
gib NAME,MARK?,(PROJ,HOURS m)m
gib MARK,(NAME,(PROJ,HOURS m)b) m
Result

MARK, (NAME, (PROJ, HOURS m) b) m

1 Ernst Fritz 4
 Otto 2
3 Sophia Ghandi 5
 Ming 4
 Otto 6

Although PROJ and MARK are not on one HP, the project collection is not empty. This could be
realized by a somewhat subtle formulation with 2 gib statements. We will get to know a more easily
understandable formulation of such requests in the following.

10.4 A simple join and nested queries
The horizontal merging or joining of the information of two tables is called a "join". In our approach,

joining two flat tables is not necessarily a flat table. We do not need an additional join operation.

Meaningful structures can be created with :=.

Program 10.4.1: Add exam data to student data ..
aus students1.tab
EXAMS:= exams1.tab at FAC
Initial part of the result (tab)

STID, NAME , LOC? ,STIP, FAC ,(STID, COURSE , MARK m) m

1111 Ernst Oehna 500 Math 1111 Algebra 1
 1111 History 1
 1111 Logic 2
 2222 Algebra 3
 2222 Databases 1
 2222 Otto 1
 3333 Databases 1
 3333 OCaml 2

104

 5555 Apel 1
 5555 Repin 1
 6666 Psycho 2
 6666 Ski 1
2222 Sophia Berlin 400 Infor 1111 Algebra 1
 1111 History 1
 1111 Logic 2
 2222 Algebra 3
 2222 Databases 1
 2222 Otto 1
 3333 Databases 1
 3333 OCaml 2
 5555 Apel 1
 5555 Repin 1
 6666 Psycho 2
 6666 Ski 1
3333 Clara Oehna 450 Infor 1111 Algebra 1
 1111 History 1
 1111 Logic 2
 2222 Algebra 3
 ...
...

The result contains 5*10=50 subtuples. To get the 10 desired subtuples, we need to add a condition.

Program 10.4.2: Add all corresponding exam records to each student record ("structured left outer
join").
aus students1.tab
EXAMS:=exams1.tab at FAC
avec COURSE! STUDENTS1/STID=EXAMS/STID
Result (tab)

STID, NAME , LOC? ,STIP, FAC ,(STID, COURSE , MARK m) m

1111 Ernst Oehna 500 Math 1111 Algebra 1
 1111 History 1
 1111 Logic 2
2222 Sophia Berlin 400 Infor 2222 Algebra 3
 2222 Databases 1
 2222 Otto 1
3333 Clara Oehna 450 Infor 3333 Databases 1
 3333 OCaml 2
4444 Ulrike 400 Art
5555 Käthe Gerwisch 600 Art 5555 Apel 1
 5555 Repin 1
6666 Claudia Berlin 600 Sport 6666 Psycho 2
 6666 Ski 1

If we want to omit Ulrike, we just have to omit the level identifier 'COURSE:'. Each tabment with the

name xyz.tab has the outermost tag XYZ. Therefore, the above extension results in the following TT:

TT (tab type of the result)

TABMENT! STUDENTS1
STUDENT1! STID,NAME,LOC?,STIP,FAC,EXAMS m
EXAMEN! STID,COURSE,MARK m
MARK STIP STID! ZAHL
COURSE FAC LOC NAME! TEXT

105

This TT allows accurate specification of column names despite duplicate name occurrences.

EXAMS/COURSE is the same as COURSE, because COURSE appears only once on the right side of the

TT.

In addition, STUDENTS1 is on the right side of EXAMS, so the tag path STUDENTS1/EXAMS/COURSE is

also identical to COURSE. However, the "tag path" STID does not specify exactly, since it occurs twice.

STUDENT1/STID is the student identifier of the studenten1 table and

EXAMEN/STID=STUDENTEN1/EXAMEN/STID of the exam table.

In a marker path X/Y/Z, Z must occur on the right side of Y and Y must occur on the right side of X in

TT. X is the paternal marker of Y and Y is the paternal marker of Z. There is no tag between X and Y

and Y and Z (in the XML or ment representation). If we don't know all the intermediate tags, we can

also use the X//Z notation. In this case, there can be any number of tags between X and Z. That is,

this tag path corresponds to a complete tag path X/X1/X2/.../Xn/Z for matching tags X1,...,Xn.

Therefore STUDENTS1//COURSE describes COURSE in the same way as the full tag path

STUDENTS1/EXAMS/COURSE.

Program 10.4.3: Program with nested query
aus students1.tab
EXAMS:=begin aus exams1.tab;;avec STID=STID~ end at FAC
Result (tab)

STID, NAME , LOC? ,STIP, FAC ,(STID, COURSE , MARK m) m

1111 Ernst Oehna 500 Math 1111 Algebra 1
 1111 History 1
 1111 Logic 2
2222 Sophia Berlin 400 Infor 2222 Algebra 3
 2222 Databases 1
 2222 Otto 1
3333 Clara Oehna 450 Infor 3333 Databases 1
 3333 OCaml 2
4444 Ulrike 400 Art
5555 Käthe Gerwisch 600 Art 5555 Apel 1
 5555 Repin 1
6666 Claudia Berlin 600 Sport 6666 Psycho 2
 6666 Ski 1

Nested queries are contained in begin and end. If we want to refer to a column name outside the

inner query, we must add a "~". Therefore STID~ is the identifier of STID of students1.

Program 10.4.4: Attempts to generate the given student table from three given flat relations..
aus students1.tab
PR:=begin aus projects1.tab
 avec STID=STID~
 gib PROJ,HOURS m end at FAC
EX:=begin aus exams1.tab
 avec STID=STID~
 gib COURSE,MARK m end at FAC

Result (tab)

STID, NAME , LOC? ,STIP, FAC ,(COURSE , MARK m),(PROJ , HOURS m) m

1111 Ernst Oehna 500 Math Algebra 1 Fritz 4
 History 1 Otto 2

106

 Logic 2
2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5
 Databases 1 Ming 4
 Otto 1 Otto 6
3333 Clara Oehna 450 Infor Databases 1
 OCaml 2
4444 Ulrike 400 Art Monet 10
5555 Käthe Gerwisch 600 Art Apel 1 Monet 20
 Repin 1
6666 Claudia Berlin 600 Sport Psycho 2 Matthes 8
 Ski 1 Witt 12

The result corresponds to students.tab.

Program 10.4.5: Generate a table with three nested levels.
aus facs.tab
weg STUDCAPACITY
ST:=begin aus students1.tab
 avec FAC=FAC~
 weg FAC end at BUDGET
EX:=begin aus exams1.tab
 avec STID=STID~
 weg STID end at STIP

Result (tab)

FAC ,DEAN , BUDGET, (STID, NAME , (LOC? ,STIP,((COURSE , MARK m) m) m

Art Sitte 2000 4444 Ulrike 400
 5555 Käthe Gerwisch 600 Apel 1
 Repin 1
Infor Reichel 10000 2222 Sophia Berlin 400 Algebra 3
 Databases 1
 Otto 1
 3333 Clara Oehna 450 Databases 1
 OCaml 2
Math Dassow 1000 1111 Ernst Oehna 500 Algebra 1
 History 1
 Logic 2
Philo Hegel 1000
Sport Streich 8000 6666 Claudia Berlin 600 Psycho 2
 Ski 1

If we want to delete only a few columns, we can use the weg (away) clause instead of a gib clause.

We notice that we get a structure with nesting depth 3, although the deepest nesting level in the

program is 2.

10.5 A user-friendly join (igib)
Through Example 10.3.20, it has become clear that the problem of loading data onto an HP when it is

not yet on an HP in the source structure can be solved in some situations with an additional gib

statement without using the Cartesian product. This problem is even more important when we

consider a given relational database with flat structures. In a tuple of such files, nothing is on an HP

except the fields that are in the same table. Therefore, an ordinary gib statement is not very

expressive. Relational systems solve this problem with joins. But the join is related to the Cartesian

product. Moreover, join conditions have to be used. In [Gol08] experiments with students were

described. They showed that missing join conditions are the most common semantic SQL error. If we

use both constructs of this section, the join conditions generally do not need to be written.

Moreover, the igib construct is not based on the Cartesian product at all. In the first part of this

107

section, we present some typical queries for igib. It is easy to use igib, but its definition seems to be a

bit more complicated than its application.

Program 10.5.1: Give the very good exams and the time-intensive projects for all students who do
not live in Gerwisch, who completed a COURSE with a 1, and who have the time-intensive projects.
Group the students by place of residence.
aus students1.tab,exams1.tab,projects1.tab
sans LOC=Gerwisch
avec MARK=1
avec HOURS>2
igib LOC,(NAME,(COURSE,MARK m),(PROJ,HOURS m)b)m
Result (tab)

LOC , (NAME , (COURSE , MARK l), (PROJ , HOURS m) b) m

Berlin Claudia Ski 1 Matthes 8
 Witt 12
 Sophia Databases 1 Ghandi 5
 Otto 1 Ming 4
 Otto 6
Oehna Ernst Algebra 1 Fritz 4
 History 1

The restructuring by igib contains a preceding natural selection natsel. This can also be used

independently of igib. natsel selects until 2 columns with the same name (here only STID) have the

same values.

aus students1.tab,exams1.tab,projects1.tab
natsel
Corresponding intermediate result after natsel:

STID, NAME, LOC?, STIP, FAC m,(STID, COURSE, MARK m),(STID, PROJ, HOURS m)

1111 Ernst Oehna 500 Math 1111 Algebra 1 1111 Fritz 4
2222 Sophia Berlin 400 Infor 1111 History 1 1111 Otto 2
5555 Käthe Gerwisch 600 Art 1111 Logic 2 2222 Ghandi 5
6666 Claudia Berlin 600 Sport 2222 Algebra 3 2222 Ming 4
 2222 Databases 1 2222 Otto 6
 2222 Otto 1 5555 Monet 20
 5555 Apel 1 6666 Matthes 8
 5555 Repin 1 6666 Witt 12
 6666 Psycho 2
 6666 Ski 1

Program 10.5.2: Group and sort student names with bad grades by location and faculty and output
the students' bad courses.
aus facs.tab,students1.tab,exams1.tab
avec MARK>2
igib LOC,FAC,DEAN,NAME,(COURSE,MARK m) m
Result (tab)

LOC, FAC, DEAN, NAME, (COURSE, MARK m) m

Berlin Infor Reichel Sophia Algebra 3

Program 10.5.3: Give out all students from Oehna with dean, courses and projects..
aus students.tab,facs.tab
avec LOC=Oehna
igib STID,NAME,FAC,DEAN,COURSEm,PROJm m
Result (tab)

108

STID, NAME, FAC, DEAN, COURSEm, PROJm m

1111 Ernst Math Dassow Algebra Fritz
 History Otto
 Logic
3333 Clara Infor Reichel Databases
 OCaml

Program 10.5.4: Add the instructor column to the courses of the students of the computer science
faculty.
aus students.tab,courses.tab
avec FAC=Infor
igib NAME,LOC?,(COURSE,TEACHER,MARK m),PROJm m
Result (tab)

NAME , LOC?, (COURSE , TEACHER, MARK m),PROJm m

Clara Oehna Databases Saake 1
Sophia Berlin Algebra Reichel 3 Ghandi
 Databases Saake 1 Ming
 Otto Benecke 1 Otto

Program 10.5.5: Find all students from large faculties who have a good mark in algebra.
FAC ,(LOC ,NAMEb m) m . Structure students by FAC and LOC, and sort them by NAME.
aus facs.tab,students1.tab,exams1.tab
avec STUDCAPACITY>300
avec MARK<4 & COURSE=Algebra
igib FAC,(LOC,NAMEb m)m
Result (tab)

FAC ,(LOC ,NAMEl m) m

Infor Berlin Sophia

109

11 Queries to Wikipedia (keys)
Like other Wikipedia, the German Wikipedia represents a great treasure of knowledge about

Germany and the world. After the English Wikipedia, it is the largest in the world. It already has 2.6

million entries and the number, scope and quality of the content are constantly being improved.

Today, most queries to Wikipedia are of a simple nature. Give me the entry with the key xyz. These

queries are answered quickly and are nicely laid out. If the key does not exist, a full text search is

performed.

Since Wikipedia's documents are very well structured, many more interesting queries could be

realized. In addition, many simple queries can be enabled if many documents are extended by

further metadata (e.g. infoboxes) in a suitable way. Metadata is data about data. For example, the

"column name" LENGTH (or AREA) is already contained in each RIVER (or COUNTRY) document.

Therefore, it would be possible to extract the 10 largest rivers in the world or Europe by a simple

query, if appropriate query facilities exist. These are typical database queries. Next to images,

structured text takes up the largest amount in Wikipedia. This means that we need a language that

can combine databases and document queries in a user-friendly way. It must have finely granulated

selection capabilities and the ability to select parts of documents and combine these parts into new

documents. Also, Wikipedia contains a significant amount of numerical data. Therefore, it must also

have facilities for computation. For example, since the age of a person is usually not included in

Wikipedia, calculation capabilities are necessary. In the above case, only the difference between the

year of death or the current date and the birth must be realized.

Compared to the other documents of the Internet (HTML), Wikipedia is very well structured.

Nevertheless, Wikipedia documents do not have such a fixed type as XML documents. It should be

achieved that the existing and future documents are further standardized (define suitable infoboxes

and adapt documents to them) to ensure that queries can be formulated as simply as possible. This

means that in addition to increasing the quantity, the quality should also be improved in the above

sense.

The following TT represents approximately corresponding parts of the structure of the German

Wikipedia. The user must know this metadata or at least have it available. Otherwise he will not be

able to formulate or understand queries. The metadata is written in German to make corresponding

queries easier to understand.

A small but an essential part of the metadata of the German Wikipedia.
WIKI! TITEL, (ANR, ATITEL, INHALT m), INFOBOX, INFO s
TITEL,ATITEL,INHALT! TEXT
ANR! ONR
BILD! BTITEL, JPG
URL, WIKILINK! WORT
TITEL ATITEL FETT KURSIV BTITEL! TEXT
Each infobox has its own scheme. We give some examples:
STAAT! EINWOHNER, FLAECHE, OFFIZIELLESPRACHEl,...
STADT! STAAT?, BUNDESLAND?, PROVINZ?, LANDKREIS?,
 GEMEINDE?, HOEHE, FLAECHE, EINWOHNER, ….
FLUSS! GEWAESSERKENNZEICHEN?, LAGEm, FLUSSSYSTEM?,
 LAENGE?,EINZUGSGEBIETl,QUELLE,LINKERNEBENFLUSS,
 RECHTERNEBENFLUSSl, GROSSSTAEDTE, MITTELSTAEDTE,…
LAENGE GROSSTAEDTE MITTELSTAEDTE ...! TEXT

From the user's point of view, Wikipedia consists of only one file. However, it contains many

different objects of different types. The names of the types are written in the INFOBOX column. For

Elbe, Rhine and Vistula, ... river is written there. So a condition INFOBOX=River selects all rivers of

110

Wikipedia. When transferred to databases, this would be a single large file with its own extensive

metadata such as LENGTH, SOURCE, LARGE CITIES,..... . The disadvantage is that all major cities of a

river are combined in one field. In the program o++o one must therefore first create a repeating

group GROSSSTADTl. It would be better if the Wikipediadatabase would already provide a repeating

group here. The infobox FLUSS alone has more than 20 column names. With this it is already clear

that due to the many different infobox names a myriad of column names exist. This increases the

complexity and is therefore a disadvantage. However, this also allows more diverse queries to be

realized, so that queries to Wikipedia open up great new possibilities not only for end users, but also

for specialists.

Another feature of the above metadata is that the structured texts are not stored recursively. This

facilitates text queries.

Since our implementation so far only works on the German Wikipedia, all examples are in German.

The following description is based on queries to a part of Wikipedia with about 28'000 struples

(structured tuples = complex data sets). Loading the struples took about 60 minutes. In general, we

assume that we load the entire Wikipedia into memory. Loading the part of Wikipedia mentioned

above required a total memory consumption of 6.9 GByte. We call our part of the German Wikipedia

with the word wiki or 'from wiki'.

s is the abbreviation for set. Unlike m, s does not require a unique scheme.

Program 11.1: How many struples (structured tuples=entries) does our Miniwikipedia contain?
wiki ++1 '3

Result

28'819

Program 11.2: Wanted is the first part of the table of contents of the city of Magdeburg.
wiki
keys [Magdeburg]
gib TITEL,(ANR,ATITEL m)
avec ANR <=12
Result (tab):

TITEL ,(ANR ,ATITEL l)
Magdeburg 0 Einleitung
 1 Geographie
 1.1 Schutzgebiete
 1.2 Klima
 1.3 Nachbargemeinden
 1.4 Stadtgliederung
 2 Geschichte
 2.1 Bedeutung und Herkunft des Namens
 2.2 Ur- und Frühgeschichte
 2.3 Mittelalter
 2.4 Frühe Neuzeit
 2.5 19. Jahrhundert
 2.6 Weimarer Republik und Nationalsozialismus
 2.7 Nachkriegs- und DDR-Zeit
 2.8 1990 bis zur Gegenwart
 2.9 1200. Stadtjubiläum
 2.10 Eingemeindungen

111

 2.11 Bevölkerungsentwicklung
 3 Religionen
 3.1 Kirchengeschichte
 3.2 Evangelische Kirchen
 3.3 Römisch-katholische Kirche
 3.4 Zeugen Jehovas
 4 Politik
 4.1 Stadtrat
 4.2 Oberbürgermeister seit 1808
 4.3 Wappen, Flagge und Dienstsiegel
 4.4 Städtepartnerschaften
 4.5 Stadtkampagne
 5 Kultur und Sehenswürdigkeiten
 5.1 Bauwerke
 5.1.1 Sakralbauten
 5.1.1.1 Altstadt und alte Neustadt
 5.1.1.2 Außenbezirke
 5.1.2 Festungsanlagen
 5.1.3 Profanbauten und weitere Bauwerke
 5.1.4 Denkmäler und Skulpturen
 5.2 Friedhofsanlagen
 5.3 Plätze und Straßen
 5.4 Brunnen
 5.5 Brücken
 5.6 Museen
 5.7 Galerien
 5.8 Theater und Oper
 5.9 Kabarett
 5.10 Freizeit und Tourismus
 5.11 Zoologischer Garten
 5.12 Parks und Gärten
 5.13 Veranstaltungsorte
 5.13.1 Nachtleben
 5.14 Sport
 5.15 Regelmäßige Veranstaltungen
 5.15.1 Frühling
 5.15.2 Sommer
 5.15.3 Herbst
 5.15.4 Winter
 5.16 Musik
 5.17 Kulinarische Spezialitäten
 5.18 Große Einkaufsmöglichkeiten
 5.19 Stolpersteine
 5.20 Halbkugeln
 6 Wirtschaft und Infrastruktur
 6.1 Industrie
 6.2 Verkehr
 6.2.1 Schienenverkehr
 6.2.2 Straßenverkehr
 6.2.2.1 Straßennamen
 6.2.3 Öffentlicher Personennahverkehr
 6.2.4 Fahrradverkehr
 6.2.5 Schifffahrt
...

112

Program 11.3 Give information about the nightlife of Magdeburg
wiki

keys [Magdeburg]

avec ATITEL=Nachtleben

gib INHALT # CONTENT

Result (web)

Magdeburg's nightlife consists mainly of dance events in larger discotheques and smaller clubs, in
addition to live concerts. A distinctive feature of Magdeburg is that many of these venues are
located in former fortresses and industrial facilities that have been vacant since reunification.
Some larger discotheques include the Festung Mark, which hosts electronic music events as well as
cultural events, and the ''Alte Theater'' on Jerichower Platz. Also offering an industrial feel is the
former factory hall ''Factory'' in the south of the city, where German and international pop, rock,
metal, indie bands regularly play and disco events are held. The nobler clubs of the city include the
''Prinzzclub'' and the ''First'', which offer a mix of lounge and club. At 45 years old, the
''Studentenclub Baracke'' is the oldest club in the city and is located directly on the grounds of
Otto von Guericke University. As an equivalent, the ''Kiste'' exists on the campus of the university
hospital for students of the medical faculty. In addition, there are other medium-sized and smaller
discos and clubs, such as the ''Boys'n'Beats'', the ''Alte Feuerwache'', the ''Kunstkantine'' or the
''Triebwerk''. Also worth mentioning are the clubs ''Strandbar'', modeled after a beach, directly on
the Elbe, with one of the first citybeach concepts in Germany, and the ''Montego Beachclub'' in the
Stadtpark Rotehorn with volleyball courts and a large pool. In 2016 and 2017, some discos were
closed. For example, in the south of the city until 2016 was the large-capacity discotheque ''Music
Hall'', the former ''Funpark'', which served special music genres in addition to mainstream genres.
In addition, in 2016 the ''Discoturm Nautica (Pearl Club)'' was closed after the fun club changed
operators following insolvency and was rebuilt. Finally, at the beginning of 2017, the ''Kulturwerk
Fichte'', a listed industrial hall from the founding times, where scene parties and other large events
were held, was closed[[Ref]][[Ref]]. The Hasselbachplatz at the southern city center has developed
into Magdeburg's pub center in recent years. Due to the high frequency during the day, but
especially in the evening hours by visitors to the numerous clubs, bars and pubs, the square is
classified as a crime hotspot and is monitored by video technology.

Program 11.4 like request 11.3 only a little more efficient
wiki

keys [Magdeburg, ["5.13.1"]]

gib INHALT

Result

same result as 11.3

Program 11.5 Output section 5.15 of Magdeburg with all subsections of any depth.
wiki
keys [Magdeburg]
avec ANR like "5.15*"
gib ANR,ATITLE,CONTENT m

Result (web)

ANR ATITLE CONTENTS

5.15
Regular
events

113

5.15.1 Spring

The '' Magdeburg Spring Fair'', a three-week shindig at the beginning of spring, is
held annually at the fairground "Max Wille" at the Kleiner Stadtmarsch directly
on the banks of the Elbe. Since 2010, the RoboCup German Open has been held
in Magdeburg's exhibition halls [[Ref]] in March/April. Thousands of visitors
follow international teams competing with their robots in various disciplines,
including robot soccer. Annually, the ''Day of Thunder'' has been held at
Magdeburg's airfield since 2000. In 15 different racing classes, different builds of
mopeds, motorcycles, cars and quads compete in a 1/8-mile race. In addition,
competitions such as "Best of Show", "Most Beautiful Overall Concept", "Best
Paintjob", "Best Interior", "Best of Sound", "Best of Exhaust" and a "dB-Sound-
Contest" will be held on a show stage. The Magdeburg Historical Spectacle
Spectaculum Magdeburgense in May in the area of the old fortifications is a
medieval event. Visitors are entertained by numerous events and activities,
including, for example, fakir shows, theater performances, a medieval market
and musical sounds from the period. Every year on Ascension Day, the ''Festival
of Encounters'' against xenophobia takes place in the Rotehorn Park.

5.15.2 Summer

In addition to the cloister serenades in the cathedral, the nationally known
summer open air of the Theater Magdeburg takes place on Magdeburg's
cathedral square in July/August. The ''BallonMagie'' days in the Elbauenpark are
held annually in August. Several hot air balloons take off at the same time and
enrich the Magdeburg sky. Special shapes such as ice cream cones, sausage cans
or airships are represented among the balloons. Christopher Street Day, also in
August, is a day of celebration for lesbians, gays, bisexuals and transgenders.
Demonstrations are held for the rights and against the exclusion of these groups.
It takes place in numerous cities in Germany. The parade stretches from
Neustadt train station through the city center, Hasselbachplatz to Liebigstraße.
Around the historic quarter at Magdeburg Cathedral, the three-day ''Kaiser Otto
Fest'' has been held annually since 2011, when buildings and squares such as the
Cleve Bastion, the Unser Lieben Frauen Monastery, the Möllenvogteigarten, the
Fürstenwall or the cathedral itself become venues for medieval attractions,
performances and pageants such as Otto I's coronation as emperor, jousting
tournaments, falconry shows and medieval songs. The festival is intended to
commemorate the importance of the city of Magdeburg as the cradle of the
German nation and European history. The bicycle action day takes place once a
year. After a rally to the assembly point, a large bicycle demonstration leads
across the city and over the Magdeburger Ring. In this way, the cyclists want to
show their colors and advocate for a more bicycle-friendly city[[Ref]]. In 2014, it
took place for the fourth time on June 28 s day.

5.15.3 Fall

In September, Magdeburg celebrates the Landeserntedankfest, with over
35,000 [[Ref]];visitors the largest public event of the agricultural
profession in Saxony-Anhalt, in the Elbauenpark. In addition, there are the jazz
festival DIAGONALE, the literature weeks, an event for literature lovers with
many offers and exhibitions, lectures and performances, the art festival
Magdeburg, the OMMMA (''Ostmobil-Meeting Magdeburg'') and the
''Magdeburger Herbstmesse'' (formerly ''Herrenmesse''), a three-week carnival
held at the beginning of autumn on the "Kleiner Stadtmarsch". In 2010 it
celebrated its 1000th anniversary, because it finds its origin in the sacred feast
of the Theban Legion of Archbishop Tagino, which was celebrated on 22
 September 1010. From the year 1220, the feast of Mauritius and his
fellow saints merged with the great Magdeburg fair, which at the time was still
held on the cathedral square. Thus, the Magdeburg Autumn Fair is today the
oldest folk festival in Germany[[Ref]].

114

5.15.4 Winter

The biggest event of the year is Magdeburg Christmas Market, with around
135 stalls. It attracts over 1.5 million visitors every year, is held on
the Alter Markt and offers many attractions, for example daily live music, a
Santa Claus talk, fairy tale performances and the historic Christmas market. It is
considered one of the most child-friendly Christmas markets in Germany and is
the longest daily open Christmas market in Germany[[Ref]]. In January, the so-
called ''Mile of Democracy'' is held annually with over 10,000 visitors, with the
Breite Weg to Hasselbachplatz being the venue for this event with numerous
actions, information booths, discussion hours and an extensive stage program. It
was created to take away the space from the march of right-wing extremists
taking place at the same time. These use the anniversary of the air raids on
Magdeburg on January 16, 1945 as an occasion for a funeral procession, and to
equate the victims with the Holocaust and the murdered in the concentration
and extermination camps and thus to trivialize the Nazi mass murders.

Program 11.6 Give the summary information of three major rivers..
wiki
keys [Mekong Yangtze Amazon]
avec ANR! ANR=0
gib TITLE,LENGTH,CONTENT m-
Result (web)

TITLE LENGTH CONTENTS

Mekong 4350
The '''Mekong''' ([] or []) is a stream in Southeast Asia that crosses six countries.
Its length is given as 4350 km to 4909 km. This makes it one of the
twelve longest rivers on earth.

Yangtze 6380

The '''Yangtze River''', in short '''Yangtze'''' (, for short:), is the longest river in
China. With 6380 kilometers, of which 2800 kilometers are navigable, it is also
the longest river in Asia and the third longest river in the world after the Nile
and the Amazon. Its headwaters are in the highlands of Tibet in Qinghai. At its
mouth into the East China Sea, it carries an annual average of 31,900 m³
of water per second. The Yangtze River plays a major role in the self-image of
the Chinese. It divides the country into North and South China and has been the
site of numerous important events in Chinese history. These include its crossing
by the People's Liberation Army during the Chinese Civil War on April 21, 1949,
and the right of Western powers to navigate the river with gunboats, which
existed until the middle of the 20th century.

Amazon 6992

The '''Amazon River''' (also , , in Brazil above the confluence of the Rio Negro
near Manaus [[Ref]], formerly) is a stream in northern South America. About
300 km south of the equator, it crosses the Amazon basin, framed in the
west by the Andes and characterized by tropical rainforest, eastward to the
Atlantic Ocean. With an average water flow of 206,000 m³/s, the Amazon
is by far the most water-rich river on earth and carries more water at its mouth
than the six next smallest rivers combined and about 70 times more than the
Rhine[[Ref]]. The river takes its name only from the confluence of its two
headwaters, the Marañón and the Ucayali, in Peru, interrupted, however, by
the Brazilian section above the city of Manaus called ''Rio Solimões''. The river,
which is usually several kilometers wide in Brazil, has a relatively balanced
water flow, since the flood phases of the tributaries meet the main stream near

115

the equator with a seasonal shift. Nevertheless, it can flood the adjacent
forested alluvial areas (''várzea'') over a width of up to 60 km. In two
main branches it flows through the island world of the almost 200 km
wide estuary, which is also connected to the Pará estuary by tidal waters, thus
separating the large island of Marajó.

The next query identifies all medium and large cities located on the Spree River. The query result

comes relatively fast, because not all 30'000 records have to be searched. This is because keys are

used here and not the general avec operation. The titles of the records give direct access to the

individual struples. When the query optimization is realized, keys should disappear from the user

level again and be replaced by avec.

The two assignments for STADTl are necessary because Wikipedia stores the large and medium-sized

cities as comma-separated lists. This means that a GROSSSTAEDTE entry results in a list of STADT.

Wikipedia is based on the MariaDB relational database management system. These systems have

general problems with lists (repeating groups):

Program 11.7: All large and medium-sized cities on the Spree are searched for in one column.
wiki
keys [Spree]
STADTl:=GROSSSTAEDTE cil at GROSSSTAEDTE
STADTl:=MITTELSTAEDTE cil at MITTELSTAEDTE
gib TITEL,STADTl
Result (tabh)

TITEL,STADT
Spree Cottbus Berlin Bautzen Spremberg Fürstenwalde/Spree

Program 11.8: Determine the heights above sea level of three cities
wiki
keys Berlin Stuttgart Heidelberg
gib TITEL,HOEHE l
Result (tab)

TITEL, HOEHE l
Heidelberg 114
Stuttgart 247
There is an important lesson to be learned from the above query. Even if you know a query language,

you do not always get the desired information. Since the above Miniwiki does not contain an entry

for Berlin, Berlin cannot appear in the result of this query language.

Program 11.9: Determine for 4 rivers the adjacent cities with their heights above sea level. For each
river, determine the average elevation of the cities above sea level.
wiki
keys [Neckar Havel Spree Weichsel]
STADTl:=GROSSSTAEDTE cil at GROSSSTAEDTE
STADTl:=MITTELSTAEDTE cil at MITTELSTAEDTE
gib TITEL,STADTl m
=: $STAEDTE
aus $STAEDTE; gib STADTm
=: $STADTM
aus wiki

116

keys $STADTM
gib TITEL,HOEHE? l
rename TITEL!STADT
, $STAEDTE
igib TITEL,(STADT,HOEHE m)m
HOEHE::=HOEHE nthzahl 1
gib TITEL,DUR,(HOEHE,STADT m-) m DUR:=HOEHE!++:
rnd 0
Result (diagram columns)

Result (tab)

TITEL, DUR, (HOEHE, STADT l) l
Havel 32. 34 Oranienburg
 29 Rathenow
Neckar 248. 382 Reutlingen
 247 Stuttgart
 114 Heidelberg
Spree 140. 204 Bautzen
 75 Cottbus
Weichsel 120. 188 Krakau
 113 Warschau
 60 Bydgoszcz
The colors in the bar chart are user-defined. Only two additional assignments were required:
RGBDUR :=cyan leftat DUR
RGBHOEHE:=brown if HOEHE>300 !
 darkgreen if HOEHE>220 !
 green leftat HOEHE

117

12 Special restructuring operations (onrs verti hori)
The onrs operation was introduced to provide o++o numbers for solving BOM problems. The given
tabment must be of type
X1,...,Xn,(Y1, ... Yk m) m

where X1 and Y1 are the keys of the respective collections. We assume that both
collections are sets. This gives us direct access to the corresponding tuples or subtuples
in working memory. We consider an example:

Program 12.1: Build a bill of materials
<TAB!
PART, PROPERTY, (SUBPART, COUNT m) m
Bush cylindrical
Rim smooth
Polo modern Wheel 4
 Engine 1
 Body 1
Golf fast Wheel 4
 Body 1
 Climate 1
 Engine 1
Piston light PistonRing 2
 Bushing 1
Engine heavy Piston 6
 Screw 8
Wheel round Screw 5
 Tire 1
 Rim 1
!TAB>
onrs OTTONR ! Golf

Result (tab)

PART, PROPERTY, (OTTONR, SUBPART, COUNT l) l
Golf fast 1 Wheel 4
 1.1 Tire 1
 1.2 Screw 5
 1.3 Rim 1
 2 Engine 1
 2.1 Screw 8
 2.2 Piston 6
 2.2.1 PistonRing 2
 2.2.2 Bushing 1
 3 Climate 1
 4 Body 1

It can be seen that all direct subparts from the Golf are assigned an otto number, which
consists of only one number. The engine is one such part. The direct lower parts of the engine
(screw and piston) are assigned otto numbers with two numbers. Similarly, the direct
lower parts of the piston are assigned otto numbers with 3 numbers. Thus, a non-recursive
set without redundancy is formed for the Golf. The table recursion could now be applied to this set
to calculate the multiplicity of containing a subpart.
Beside the Inputtabment onrs needs the name of the ONR column (here OTTONR) and one
or more parts (here only Golf) for which the ONR resolution is to be made. Accordingly, the program
line
onrs STRUK_NR ! [Polo Golf]

118

is correct and reasonable.

The verti operation can be used to convert certain tuples into lists of pairs. This
has the advantage that list operations, such as selecting, can be applied to these lists.
This converts the metadata into primary data and inserts a new schema into the existing one. The
following file was obtained from an EXCEL table.

climate_radiation1.tab
has the scheme:
ID,COUNTRY,WIDTH,LENGTH,SEAHEIGHT?,JAN,FEB,MRZ,APR,MAY,JUN,JUL,AUG,

 SEP,OCT,NOV,DEC l

It contains 17 columns. Using verti, you can reduce the number of columns to 7 in the following way:
aus climate_radiation1.tab

verti MON,RADIATION l:= JAN ..DEC

This flat table is transformed into a structured one, in which the radiations are arranged vertically
and the months are output in an additional column:
ID, COUNTRY, WIDTH, LENGTH, SEAHEIGHT?, (MON,RADIATION l) l
BG0001a-Varna Bulgaria 43.21 27.91 44 Jan 63.
 Feb 68.
 Mar 81.
 Apr 87.
 May 88.
 Jun 81.
 Jul 86.
 Aug 100.
 Sep 95.
 Oct 88.
 Nov 66.
 Dec 59.
BG0002a-Shumen Bulgaria 43.283 26.933 242. Jan 59.
 Feb 68.
 Mar 83.
 Apr 88.
 May 88.
 Jun 81.
 Jul 88.
 . . .
. . .

Now you can easily create statistics about RADIATION or easily select specific months,

Program 12.2: Arrange the subjects vertically so that they can be merged with the other subjects
(for the determination of the report marks).
<TABH!
NAME, LOC, BORN, CLASS?, (HOBBY, HOURS l),MATHl, GERMANl l
Clara Oehna 12.6.11 4 Riding 5 1 2 3 1 1 1
 Chess 1
Claudia Dallgow 14.9.17 Chinese 5
 Food 4
Sophia Dallgow 7.9.13 2 Painting 5 1 2 1 2 1
 Wheelturning 4 1 1
 Chinese 6
!TABH>
verti SUBJECT,MARKl l:=MATHl .. GERMANl
Result (tabh)

NAME ,LOC ,BORN ,CLASS? ,(HOBBY ,HOURS l),(SUBJECT ,MARKl l) l
Clara Oehna 12.6.11 4 Riding 5 Math 1 2
 Chess 1 German 3 1 1 1

119

Claudia Dallgow 14.9.17 Chinese 5
 Food 4
Sophia Dallgow 7.9.13 2 Painting 5 Math 1 2 1 1
 Wheelturning 4 German 1 2 1
 Chinese 6

The reverse operation to verti is hori. Here the elementary tag whose values are to become column

names must be specified as the second input value.

Program 12.3: Arrange the subjects horizontally.
<TABH!
NAME, LOC, BORN, CLASS?,(HOBBY, HOURS l),(SUBJECT,MARKl l)l
Clara Oehna 12.6.11 4 Riding 5 Math 1 2
 Chess 1 German 3 1 1
Claudia Dallgow 14.9.17 Chinese 5
 Food 4
Sophia Dallgow 7.9.13 2 Painting 5 Math 1 2 1 1
 Wheelturning 4 German 1 2 1
 Chinese 6
!TABH>
hori SUBJECT
Result (tabh)

NAME, LOC?, BORN?, CLASS?, (HOBBY, HOURS l),MATHl, GERMANl l
Clara Oehna 12.6.11 4 Riding 5 1 2 3 1 1
 Chess 1
Claudia Dallgow 14.9.17 Chinese 5
 Food 4
Sophia Dallgow 7.9.13 2 Painting 5 1 2 1 1 1 2 1
 Wheelturning 4
 Chinese 6

Just as in the above example the output table is created again by suitable successive application of

verti and hori, this can also be achieved in the previous example:

Program 12.4 Application of verti and hori

climate_radiation1.tab
verti MONTH,RADIATION l :=JAN .. DEC
hori MONTH

Result (meta)

TABMENT! CLIMATE_RADIATION1
CLIMATE_RADIATION1! (ID,COUNTRY,WIDTH,LENGTH,SEAHEIGHT?,JAN,FEB,MRZ,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC l)
ID COUNTRY! TEXT
APR AUG WIDE DEC FEB JAN JUL JUN LENGTH MAY SEA HEIGHT MARCH NOV OCT SEP! PZAHL

120

13 Some operations for text processing with o++o (+ -+ cil zil satzl)
The + symbol can also be used to concatenate and manipulate text. Here, too, a small difference is

made between TEXT and WORT. Example:

Program 13.1: There are small differences between WORD and TEXT concatenation
WORDRESULT:=otto + " o++o"
TEXTRESULT:=otto text + " o++o"
Result (tab)

WORDRESULT, TEXTRESULT
otto_o++o otto o++o

Since the first input value of WORDRESULT is a word, the result is also of type WORT. The same

applies to the second case, where the result is a text. Words cannot contain spaces.

-+ is an operation with 3 input values

The TT of the first input value is retained. Each occurrence of the second input value is replaced by

the third.

Program 13.2: -+text
<TAB!
X, Y l
1 Today is Monday.
2 Yesterday is Sunday.
!TAB>
-+text "is S" ! "was S"
Result (tab)

X,Y l
1 Today is Monday.
2 Yesterday was Sunday.

Program 13.3:
TEXTPLUS:="Today is a beautiful " + day

TEXTMINUS:=Thunmmder_weather - "m"

TEXTMINUSPLUS:="Today is a beaoetiful day." -+text oe ! u
Result (tab)

TEXTPLUS, TEXTMINUS, TEXTMINUSPLUS
Today is a beautiful day Thunder_weather Today is a beautiful day.

A function cil which extracts all words from a tabment has also been implemented. An analogous

function for sentences (satzl) has been implemented, which so far uses a relatively rudimentary end-

of-sentence detection.

Program 13.4: "Coding" a text.
"Today is Tuesday. Tomorrow is Wednesday."
zil
sans WORT inmath ["a" "e" "i" "o" "u"]
WORT::="t" if WORT="m"!
 "m" if WORT="t"!
 WORT;; ++text
Result (tab)

TEXT
Tdy s Tsdy. Ttrrw s Wdnsdy.

121

The cil operation is particularly useful for making queries on documents whose schema is not fully

known to the user. With the term "avec Schulze back" he can select all elements of a collection that

contain the word "Schulze" and the word "back" without having to know the attribute names in

detail. If no selection level is specified, the selection is always made in the topmost collections.

Program 13.5: Illustration of "in" in texts
<TAB!
NR,SECTION l
1 Today S. Schulze is in Hong Kong. Tomorrow S. Schulze is in Beijing.
2 S. Schulze is back.
3 S. Meier lives in Magdeburg.
!TAB>
avec (Schulze back) in SECTION # in based on cil
Result (tab)

NR, SECTION l
2 S. Schulze is back.

Program 13.6: Eliminate the dot from numbers in a list.
Xl:=1.1 ..15 eb 3 # eb: Exponent base = ^ with swapped exponents
Y:= X zil
sans WORT="."
Y::=Y ++text
Result (tab)

X, Y l
 3.3483695221 33483695221
 10.0451085663 100451085663
 30.1353256989 301353256989
 90.4059770967 904059770967
 271.21793129 27121793129
 813.653793871 813653793871
 2440.96138161 244096138161
 7322.88414484 732288414484
 21968.6524345 219686524345
 65905.9573035 659059573035
 197717.871911 197717871911
 593153.615732 593153615732
1779460.8472 17794608472
5338382.54159 533838254159

122

14 Format with o++o ('3 '4 norm3e norm3m mant rnd)
Analogous to SQL, o++o had initially limited itself to content problems. However, o++o uses much

richer structures than SQL. Formatting was then taken over from SVG. Thus one could frame a table,

write letters bold or colored, Now we have implemented more possibilities. Numbers with a

larger mantissa are hard to read if they are not grouped. Since many different variants are used for

number representations in the world, we have chosen representations that do not collide with the

existing ones as much as possible and are still more readable.

Grouping of digit sequences ('3 '4)

Following the Swiss model, o++o uses the apostrophe to make numbers more readable. Blocks of

three are the most important along with blocks of four.

Program 14.1: Improve readability of several numbers by grouping them.

12345678, 1234567.87654 '3 ;1234567890 '4
Result (tab)

ZAHL, PNUMBER, ZAHL

12'345'678 1'234'567.876'54 12'3456'7890

Such representations are created by the (unary) operations '3 and '4. The user can also set the

apostrophe arbitrarily, for example to make telephone numbers more readable:

0176'84'208'408

Operations that generate such are too complicated, so o++o cannot generate them.

Internationally, both the comma and the point (dot) are used as decimal separators and the point

and the comma are also used for grouping. We hope to eliminate this inconsistency through these

arrangements.

Exponent first notation (norm10m) and norm10e

PZAHL numbers with long mantissa are not to be grasped fast enough, since the more substantial

exponent is indicated only at the end of the string. Furthermore, people think in thousands, millions,

billions, An exponent 7 or 8 must be recognized as first 10- or 100-million. This way of thinking

reflects o++o by allowing only multiples of 3 as exponent. Furthermore, the exponents can also be

given first:

6m12.345 (12 million ...)

9m123.4 (123 billion ...)

the old mantissa first notation knows o++o nevertheless. However here also multiples of 3 are used

as exponent:

12.3456789e6 (12 million ...)

123.456789e9 (123 billion ...)

These formatting's can be generated by the one-digit (unary) operations norm3m (for the

representation with m) and norm3e (for the latter). The 3 expresses that the exponent is a multiple

of 3.

123

Program 14.2: Improve the readability of numbers by normalizing the exponents.

12345678.9 norm3m;12345678.9 norm3e
Result (tab)

PZAHL, PZAHL

6m12.3456789 12.3456789e6

The reduction of the digits (mant)

Most people don't care about the many decimal places when a calculator outputs the square root of

2 or 3 with more than 10 digits. The overload of irrelevant information makes it harder for us to see

what is important. Therefore, omitting unnecessary digits (information) is important.

The binary function mant realizes this and converts the result immediately into the m-

representation. I.e. the operation norm3m is applied at the same time. The second argument of

mant specifies the number of digits desired.

Program 14.3: Reduce the number of digits to four.

12345678.98765 , 1234567890
mant 4
Result (web)

6m12.34 9m1.234

You can already see from this example that the mant function is especially important for the cell

phone. This makes more columns of a result table visible on the display at the same time.

124

15 Structured diagrams
With o++o you can easily create diagrams. Once you have created an o++o program, you can use the

diagram button to open a new browser window that offers a choice of different diagram types.

Column charts are certainly the most commonly used. The following rules apply to diagrams:

1. TEXTs are converted to words by the system by replacing each space with an underscore.

2. Numeric columns (ZAHL, PZAHL, RATIO) are displayed as columns.

3. The first word column of each hierarchy level is used as the signature for the columns. The

other word columns of the level are ignored. If no word column exists, a dash acts as a

signature.

4. If no RGB values are given, the system sets default colors. If the user wants to choose the

colors, each numeric column must have an RGB column in the same level or higher. If an RGB

value is placed directly in front of a number column, it determines the color of the column.

5. If the table to be displayed starts with the column name TITEL, the content of the column is

interpreted as the heading of the entire chart.

We already know that a simple list of numbers is an o++o program that can be represented as a

diagram. If there is one more word in each line, it serves as a signature:

Program 15.1: Create a column chart with signatures
<TAB!
NAME, AVERAGE l
Ernst 1.7
Clara 1.3
Sophia 1.33
Ulrike 2.3
Claudia 2.1
Käthe 2.4
!TAB>
Result (Diagram- Säulen (Columns))

125

Program 15.2: Sort the columns with signatures by size
<TAB!
NAME, AVG l
Ernst 1.7
Clara 1.3
Sophia 1.33
Ulrike 2.3
Claudia 2.1
Käthe 2.4
!TAB>
gib AVG,NAME m
Result (diagram - columns)

126

towers.tab

TOWER, CITY, COUNTRY, HEIGHT l

Burj Khalifa Dubai VAR 830
Shanghai Tower Shanghai China 632
Abraj Al Bait Mecca Saudi Arabia 601
Ping An Finance Center Shenzen China 599
Goldin Finance Tainjin China 597
Lotte World Tower Seoul South Korea 555
1 WTC New York USA 541
Guangzhou CTF Finance Center Guangzhou China 530
China Sun Tower Beijing China 528
Taipei 101 Taipei Taiwan 508
World Finance Center Shanghai China 492
Lakhta Center Saint Petersburg Russia 462
Vincom Landmark 81 Ho Chi Minh City Vietnam 461
Petronas Towers Kuala Lumpur Malaysia 452
Berlin TV Tower Berlin GDR 368

Program 15.3: Represent each tower by a column
towers.tab
TOWER::=TOWER subtext 1!12 # By this shortening of the name are also
 # in the bar chart all names at the same time
 # visible; for space reasons, otherwise

127

 # sometimes some hidden
Result (diagram columns)

Program 15.4: Represent each tower by a bar and output the bars country by country. Countries with
the highest towers are to be output first (sort downwards). For each country, sort the towers
upwards. The countries are to be visually marked off.
aus towers.tab
gib MAX,COUNTRY,(HEIGHT,CITY m) m- MAX:=HEIGHT!max
COUNTRY::=COUNTRY wort + "-----------------------------------" subtext 1!30
RGBDARKGREEN:=darkgreen leftat MAX
RGBGREEN:=green leftat HEIGHT
upper part of the result (diagram bar)

128

129

weights.tabh

NAME, LENGTH, (AGE,WEIGHTl l) l

Bert 1.72 18 66 65
 30 70 71
Kathi 1.7 18 55 52
 40 70 71
Klaus 1.68 18 61 60 62
 30 65 63 67
 61 80 82 79
Rolf 1.78 40 72 70 74
Victoria 1.61 13 51 50
Walleri 1. 3 16 15

Program 15.5: Calculate BMI averages for all adults, for each age group, and overall. To realize the
first 5 lines EXCEL needs more than 6 worksheets.
aus weights.tabh
avec NAME! AGE>20
gib BMI,(AGE,BMI,(NAME,BMI m) m)
 BMI:=WEIGHT:LENGTH:LENGTH ! ++:
rnd 2
AGE::=AGE wort
RGBRED:=red leftat BMI
RGBDARKGREEN:=darkgreen leftat BMI2
RGBGREEN:=green leftat BMI3
TITEL:="BMI averages total (red), per AGE (dark green), "
 + "per person and age (green)" leftat RGBRED
Result (diagram Säulen (columns))

130

Program 15.6: Compare the weights, lengths and BMI of all persons. Sort the persons by BMI.
aus weights.tabh
TITEL:="BMI in cyan, weight in kg (light blue) and length in dm (orange)"
gib TITEL,(BMI,NAME,WEIGHTAVG,LENGTH m)
 WEIGHTAVG:=WEIGHT!++:
 BMI:=WEIGHT:LENGTH:LENGTH ! ++:
LENGTH::=LENGTH*10
AGE::=AGE wort
RGBLIGHTBLUE:=lightblue leftat WEIGHTAVG
RGBORANGE :=orange leftat LENGTH
RGBCYAN :=cyan leftat BMI
Result (diagram columns)

131

Program 15.7: Represent 2 functions by bar graphs.
Xl:=0 ...10!0.05
SINE :=X sin
ROOT:=X sqrt
X::=X wort
RGB:=violet leftat SINE
RGB:=beige leftat ROOT
Result (diagram columns)

132

elections.tab

YEAR, (PARTY,SEATS l) l

1998 PDS 36
 SPD 298
 Grüne 47
 Union 245
 FDP 43
2009 Linke 76
 SPD 146
 Grüne 68
 Union 239
 FDP 93
2017 Linke 69
 SPD 153
 Grüne 67
 Union 246
 FDP 80
 AfD 92
 Sonst 2
2021 Linke 39
 SPD 206
 Grüne 118
 FDP 92
 Union 197
 AfD 82
 Sonst 2

133

Program 15.8: Visualize 4 election results and calculate the average number of votes of the 4
elections.
elections.tab
YEAR::=YEAR wort
PARTY::=Linke if PARTY="PDS" ! PARTY
gibl TOTAL,PARTY m-,(YEAR,(SEATS,PARTY m-)m) TOTAL:=SEATS! ++:
RGB:=red if PARTY="SPD" !
 yellow if PARTY="FDP" !
 darkred if PARTY=Linke !
 blue if PARTY=AfD !
 black if PARTY=Union !
 green if PARTY=Grüne !
 grey leftat TOTAL SEATS
Result (diagram columns)

Result without RGB values (tab)
TOTAL ,PARTY l,(YEAR ,(SEATS ,PARTY l) l)
231.75 Union 1998 298 SPD
200.75 SPD 245 Union
 87. AfD 47 Grüne
 77. FDP 43 FDP
 75. Grüne 36 Linke
 55. Linke 2009 239 Union
 2. Sonst 146 SPD
 93 FDP
 76 Linke
 68 Grüne
 2017 246 Union
 153 SPD
 92 AfD

134

 80 FDP
 69 Linke
 67 Grüne
 2 Sonst
 2021 206 SPD
 197 Union
 118 Grüne
 92 FDP
 82 AfD
 39 Linke
 2 Sonst

states6.hsq

STATE, SHORT, AREA, INHABITANTS l

Sachsen SN 18'449.99 4'077

Sachsen-Anhalt ST 20'451.58 2'208

Thüringen TH 16'172.5 2'134

Bayern BY 70'541.57 13'076

Baden-Württemberg BW 35'751.46 11'069

Nordrhein-Westfalen NRW 34'110.26 17'932

Program 15.9: Sort and visualize the states by population per area and by population. (Visualize 2
independent tables.)
states6.hsq
INHABITANTSPERAREA:=INHABITANTS : AREA *10'000
gib INHABITANTSPERAREA,STATE m- , (INHABITANTS,STATE m-)
'3
rnd 0
Result (diagram columns)

135

Result (rounded to 0 digits and '3)
INHABITANTSPERAREA ,STATE m-,(INHABITANTS ,STATE m-)
5'257. Nordrhein-Westfalen 17'932 Nordrhein-Westfalen
3'096. Baden-Württemberg 13'076 Bayern
2'210. Sachsen 11'069 Baden-Württemberg
1'854. Bayern 4'077 Sachsen
1'320. Thüringen 2'208 Sachsen-Anhalt
1'080. Sachsen-Anhalt 2'134 Thüringen
Program 15.10: Sort and visualize the states by population per area and by population, such that
each states gets the same color in each of the diagrams. Divide the tables by additional space.
states6.hsq
INHABITANTSPERAREA:=INHABITANTS : AREA *10'000
MIDDLE:=Middle
gibl INHABITANTSPERAREA,STATE,SHORT m- ,MIDDLE,(INHABITANTS,STATE,SHORT m-)
RGB:= red if SHORT="NRW" !
 blue if SHORT="BW" !
 yellow if SHORT="SN" !
 green if SHORT="BY" !
 violet if SHORT="TH" !
 cyan leftat INHABITANTSPERAREA INHABITANTS
Result (diagram columns)

136

137

16 Multiple diagrams
In the previous chapter we saw that a structured table can usually also be represented as a

structured chart. Program 15.6 demonstrates that this also works for larger tables. However, pie

charts quickly become confusing if a circle represents too many numbers.

Structured tables usually contain several sub-tables. These naturally contain fewer elements than the

source table, so in this chapter each sub-table will be represented by a diagram. With multiple

diagrams, structured tables are visualized even more directly than with structured diagrams.

Program 16.1: Sort and visualize the states by population per square kilometer and by population.
(Visualize 2 independent tables.)
states6.hsq
INHABITANTSPERKM2:=INHABITANTS : AREA *1'000
gib INHABITANTSPERKM2,STATE m- , (INHABITANTS,STATE m-)
'3
rnd 0
Result (2 bar charts)

Result (2 pie charts)

In program 15.9, the inhabitants per square kilometer were multiplied by 100,000 to make the

columns clearly visible. This adjustment is not necessary for multiple charts.

Program 16.2: as 15.8
elections.tab
YEAR::=YEAR wort
PARTY::=Linke if PARTY="PDS" ! PARTY
gib TOTAL,PARTY m-,(YEAR,(SEATS,PARTY m-)m) TOTAL:=SEATS! ++

138

Result (5 bar charts)

Result (5 pie charts)

139

Note the difference between the above program and program 15.8. In 15.8 the sum of the four files

is calculated and here the average is calculated. Therefore, the order of the parties in the total

balance differs. The order does not change even if an "average" is calculated by division by 4. Here

you can see how important it is that the end user must be able to read the program in order to

correctly process the information received.

140

17 Image generation

Since with o++o numbers can be generated in a simple way, one can also generate whole
images. For example, Xl:= 0 .. 4 generates the numbers 0 1 2 3 4. You can assign diagrams to
these numbers, but to generate an image with o++o you need a list or a set of number pairs
(X,Y). The point gets a color if there is a RGB (RED,GREE,BLUE) triple before the X or before
the Y value:
(X, RGB, Y)
For RGB values o++o has 3 display options.
English color names
red, silver, cyan, ...
Triples of integers between 0 and 255

(255,0,0) (=red), (192,192,192) (=silver), (0,255,255) (=cyan)
Number triples between 0 and 1:
(1.,0.,0.) (=rot),(0.752941,0.752941;0.752941)(=silver),(0.,1.,1.) (=cyan)
We start with 2 functions, but initially define them only for 10 X values. You have to look
closely to see the points:
Program 17.1: Create 10 points twice.
Xl:=0 ..9
Y :=X sin
Y0:=X*0
Result (image - new window)

By introducing a step size of 0.1, the number of points is increased tenfold.
Program 17.2: Create 100 points twice.
Xl:= 0 ...9!0.1
Y:=X sin
Y0:=X*0
Result (image - new window)

141

Now we add another 0 to the step size.
Program 17.3: Create 1000 points twice.
Xl:=0 ...9!0.01
Y :=X sin
Y0:=X*0
Result (image - new window)

The sine function now becomes red and the X-axis green. The fact that a column name
occurs twice (RGB) does not cause any problems at this point.

Program 17.4: Display 2 functions in color.
Xl:= 0 ...9!0.01
Y :=X sin
Y0:=X*0
RGB:=red leftat Y
RGB:=green leftat Y0
Result (image - new window)

The fact that it is also possible to create "full images" is first shown by the German flag. You
can see that all points that follow a color value are output in this color. Thus, only three color
values are needed for the German flag. The term pixel has lost its meaning here or must be
redefined.

Program 17.5: Generate the German flag
Xl:= 0 ...9!0.01
Yl:= 0 ...2!0.01 at X
=: $RECTANGLE
aus RGB:=gold
,$RECTANGLE
RGB:=red
,$RECTANGLE+(0,2)
RGB:=black
,$RECTANGLE+(0,4)

142

Result (image + new window)

Program 17.6: Design a bikini. Color the functions mirrored between sine and sine mirrored.
Xl:=pi * -1 ...pi!0.005
Yl:=X sin abs *-1 ...(X sin abs)! 0.005
RGB:= 0.1+(X+Y sin abs),0.2,0.4 leftat Y
Result (image + new window)

143

18 Image editing

The following programs are all based on the photo of an Indian:

Program 18.1: Display a photo!

inder.jpg
Result (image)

(see above)

Above image takes only 42.2 KByte.

144

In the following it becomes clear that the file contains 160 thousand records (tuples).

Program 18.2: Count the lines (pixels) of the photo.

inder.jpg ++1 '3
Result (tab)

160'001

Usually, it is not possible to look at all points of an image. Therefore, we only output the first
14 5-tuples in the following.

Program 18.3: Select the first 14 image pixels.
inder.jpg
avec X pos < 15
Result (tab)

X, RGB, Y l
0. 228,232,220 0.
0. 227,231,219 0.01
0. 227,231,219 0.02
0. 226,230,218 0.03
0. 227,231,219 0.04
0. 228,232,220 0.05
0. 229,233,221 0.06
0. 230,234,222 0.07
0. 229,233,221 0.08
0. 229,234,221 0.09
0. 229,234,221 0.1
0. 229,234,221 0.11
0. 229,233,221 0.12
0. 229,233,220 0.13

Program 18.4: Calculate the extreme values of the coordinates of the image points
inder.jpg
gib XMAX,XMIN,YMAX,YMIN
 XMAX:=X!max XMIN:=X!min
 YMAX:=Y!max YMIN:=Y!min
Result (tab)

XMAX, XMIN, YMAX, YMIN
4.02 0. 3.99 -0.05

You can see here that the photo represents a 4 x 4 square. The X and Y values are therefore
between 0 and 4.
Program 18.5: Output the left part of the photo.
inder.jpg
avec X pos < 50'000
Result (image)

145

A simple red rectangle can also be created with any photo by simply overwriting any color
value.

Program 18.6: Paint the photo red.
inder.jpg
RGB::= red
Result (image-new window)

146

Also, very easy to create the German flag from the photo:
Program 18.7: Transform a photo to the German flag.
inder.jpg
RGB::= black if Y>8:3 !
 red if Y>8:6 !
 gold
Result (image - new window)

147

Program 18.8: Hide the head behind a brown bar.
inder.jpg
RGB::= brown if 1.5<X & X<2.5 ! RGB
Result (image - new window)

Program 18.9: Convert any stronger green to pure green.
inder.jpg
RGB::= green if RGB nth 2>100!RGB
Result (image - new window)

148

Program 18.10: Convert a color photo into a black-cyan photo.
inder.jpg
RGB::= cyan if RGB ++ <220!black
Result (image - new window)

149

Program 18.11: Output the photo including a displacement of the photo.
inder.jpg
Y:=inder.jpg+(8.,0,0,0.)
Result (image - new window)

Program 18.12: Arrange the head of the Indian in a 2*4 rectangle.
inder.jpg
avec X- 2 ^ 2 +(Y - 2.3 ^ 2) <1
=: $HEAD
aus Zl:= 1 ..4
W1:= $HEAD + (0.;0;0;2*Z)
W2:= $HEAD + (2.;0;0;2*Z)
Result (image - new window)

150

In the following it becomes clear that the Indian is still clearly visible, although we have only
taken over its red part. A blue wave starts at the top right of the following image, regardless
of the given colors.
Program 18.13: Create a blue wave over the red parts of the photo.
inder.jpg
RGB::=RGB nth 1;0 ;X+Y sin abs
Result (image)

Even though we have only given a few examples here, it should have become clear that with
o++o you can create thousands or millions of different images from a single photo.

151

19 A baker application (CSS)
In this chapter, form questions take up somewhat more space than the content questions of the

otto- program. The baker wants to create invoices and then be able to evaluate the collected invoice

data. The following program generates the invoice and saves the essential data of all invoices

immediately into a file rechnungen22.hsq, which can be re-evaluated immediately after an invoice is

created.

Program 19.1 Printing invoices for customers and saving them to a file.
$RECHNNR :="25#22"
$KUNDE :="Senioren"
$RECHNVOM :="19.11.2022"
$DATUM :="21.11.2022"
$BEZAHLT :=nein
$BESTELLUNG:= <TAB!
PRODUKT, ANZAHL m
Hanfbrot 6
Baguette 6
Brötchen 77
Kürbisbrötchen 20
Partystange 5
Mischbrot 1 kg 7
Milchbrötchen 26
!TAB>
################## ENDE DER EINGABE #########################
$FALSCHEPRODUKTE:=begin aus $BESTELLUNG;; gib PRODUKTm
-coll begin aus produkte.tab;;gib PRODUKTm end end
$KUNDEANZ:=begin aus kunden.tab; avec KUNDE = $KUNDE; ++1 end

aus ($KUNDEANZ = 0 | $FALSCHEPRODUKTE ++1>0) dann (($KUNDEANZ=0) dann
"Kunde inkorrekt" ! ("falsche Produkte:" ; $FALSCHEPRODUKTE)) !
 begin
aus $BESTELLUNG,produkte.tab
igib (PRODUKT,STEUER,PREIS,ANZAHL) m
=: $BESTELLUNGGESAMT
aus $BESTELLUNGGESAMT
,absender.tab
,begin aus kunden.tab;avec KUNDE = $KUNDE;gib KUNDENADRESSE
KUNDENADRESSE=NAME,STRASSE,ORT end
GESAMTPREIS := STEUER :100 +1 *PREIS *ANZAHL
gib ABSENDER,KUNDENADRESSE,TABELLEN
 TABELLEN= ZEILEN,ZAHLUNGSBETRAG
 ZEILEN= PRODUKT,ANZAHL,STEUER,PREIS,GESAMTPREIS l
 ZAHLUNGSBETRAG:=GESAMTPREIS!++
rnd 2
,bankverbindung.tab
BILD:= "bilder/brotraucht.png" at ABSENDER
$L:="Re.Nr: " + ($RECHNNR text)
$M:="Rechn. vom " + ($RECHNVOM text)
$R:="Gerwisch, " + ($DATUM text)
BETREFF:= $L,$M,$R leftat TABELLEN
ZAHLUNGSBETRAG::="ZAHLUNGSBETRAG: " + (ZAHLUNGSBETRAG text) + " €"
tag0 RECHNUNG
FORMAT:=format2.tab
=: $ERGEBNIS

152

aus $RECHNNR,$DATUM,$KUNDE,$BEZAHLT,$BESTELLUNGGESAMT
gib RECHNNR,DATUM,KUNDE,BEZAHLT,(PRODUKT,ANZAHL,STEUER,PREIS m) m
,rechnungen.hsq
gib RECHNNR,DATUM,KUNDE,BEZAHLT,(PRODUKT,ANZAHL,STEUER,PREIS m) m
rnd 2
save rechnungen22.hsq

aus $ERGEBNIS
end

Result (web) (new window)

153

After the baker has entered his order data, it is checked whether all product names are also

contained in the file products.tab. Then, all data of the order relevant for the costs are summarized

in the tab variable $BESTELLUNGGESAMT. This variable has a schema of the type

PRODUCT,TAX,PRICE,ZAHL m. I.e. it contains a whole table. To this data the customer data and the

sender are added. The total price is calculated. The invoice requires additional tags so that the data

can be formatted in the desired way. The whole invoice is cached in the $ERGEBNIS tab variable so

that the invoice can be added to rechnungen22.hsq before.

The format data has been summarized in the file format2.tab:

154

Format file format2.tab from program 16.1
SELECT, TYPE, STYLEl l
RECHNUNG div vertikaleausrichtung:oben
BETREFF span rand-links:15mm
MITTE span
UNTEN div position:absolute
 oben:230mm
 rand-links:10mm
 border-width:6px
 border-style:groove
 border-color:darkgreen
ABSENDER div rand-oben:10mm
 rand-links:15mm
 rand-rechts:110mm
 border-width:6px
 border-style:groove
 border-color:darkgreen
BILD img position:absolute
 oben:10mm
 rechts:15mm
 border-width:6px
 border-style:groove
 border-color:violet
KUNDENADRESSE div rand-links:15mm
 rand-oben:10mm
 rand-unten:10mm
 rand-rechts:110mm
 border-width:6px
 border-style:groove
 border-color:cyan
L span border-width:6px
 border-style:groove
 border-color:darkgreen
M span border-width:6px
 border-style:groove
 border-color:darkgreen
R span border-width:6px
 border-style:groove
 border-color:darkgreen
TABELLEN div ausrichtung:rechts
 rand-rechts:10mm
ZEILEN tabelle float:right
 rand-oben:10mm
 rand-rechts:10mm
 schriftgroesse:gross
 border-width:6px
 border-style:groove
 border-color:firebrick
ZAHLUNGSBETRAG tabelle float:right
 clear:both
 rand-oben:10mm
 rand-rechts:10mm
 schriftgroesse:gross
 border-width:6px
 border-style:groove

155

 border-color:red
GESAMTPREIS ausrichtung:rechts
 white-space:nowrap
STEUER ausrichtung:rechts
EINZELPREIS ausrichtung:rechts
MENGE ausrichtung:rechts
NAME span fett
BANKVERBINDUNG div position:absolute
 oben:257mm
 rand-links:15mm
 border-width:6px
 border-style:groove
 border-color:darkgreen

For the calculation below, the image (the .png file) and the format file have been replaced with

format.tab:

156

The same output is indicated with 2 background colors for demonstration purposes:

157

The file rechnungen22.hsq can be evaluated after each invoice creation for example with the

following short program. Conditions could be inserted before the gib:

158

Program 19.2: Calculate total and monthly sales for each customer and product.
rechnungen22.hsq
MON:=DATUM text subtext 4!2
gib UMSATZ,(KUNDE,(UMSATZ,(MON,UMSATZ m)m)m),
 (PRODUKT,UMSATZ,(MON,UMSATZ m)m)m
UMSATZ:=ANZAHL*PREIS +% STEUER ! ++
rnd 2
Result (tab)
UMSATZ ,(KUNDE , (UMSATZ2, (MON, UMSATZ3 l) l) l),(PRODUKT ,UMSATZ4,(MON,UMSATZ5 l) l)l
2066.10 AFF 254.21 11 195.42 Baguette 656.77 10 14.12
 12 58.79 11 157.72
 Backschwein 773.03 11 210.23 12 484.92
 12 562.80 Brötchen 200.82 10 28.01
 Landgasthof 113.27 10 113.27 11 107.32
 Senioren 925.58 11 634.88 12 65.48
 12 290.70 Brötchen belegt halb 231.01 11 120.05
 12 110.96
 Hanfbrot 827.65 10 22.47
 11 554.26
 12 250.92
 Kürbisbrötchen 28.89 10 9.63
 11 19.26
 Milchbrötchen 35.89 10 11.96
 11 23.93
 Mischbrot 1 kg 46.56 10 14.23
 11 32.32
 Partystange 38.52 10 12.84
 11 25.68

159

20 Appendix A: List of operations and keywords of o++o
Most of the known operations have an arity. The square root, for example, requires only one input

value or argument - this is usually a number. In the o++o data model, this can also be a list of

numbers. Then the square root is taken from each of the numbers. The list is then considered to be

one input value, even though it may contain ten or even ten thousand numbers. That is, sqrt remains

unary even in this case.

In the o++o syntax the sqrt symbol must follow the argument (postfix). This means that no additional

parentheses are required. It is not allowed to write sqrt([2 4 7]) in o++o. But instead, you can use

[2 4 7] sqrt

or also

2 4 7 sqrt

.

In both cases you get the same result. You can even apply sqrt to any tabment.

Another example is the addition. The + operator is even better known than the root operation. It has

arity 2, which means it requires two input values. The addition is binary. The application of the wrong

number of arguments leads to a syntactical error and a corresponding error message.

3 +

as well as

3 4 +

lead to error messages.

In the term

3 + 4

3 is the first argument and 4 is the second input value. Again, a list or other tabment can be used as

the first argument. The operation and the second argument are then applied to all elements of the

list/table.

1 3 7 + 4

results in

5 7 11

Here and in many other operations the type of the result corresponds to the type of the first input

table. So the above result is also a list of numbers. Binary operations are always written between the

two input tables in o++o. You can also see it that they have to appear after the first input table like

the unary operations. The same applies to three-digit operations in o++o. "!" is used as a separator

between the second and third input values.

Hadmersleben subtext 4!5

for example, has the result:

mersl

The first input value is "Hadmersleben". The second input value (4) specifies the position of the initial

letter of the partial word and the third input value (5) specifies the desired length.

5 if X>3 ! 6

also requires 3 input values (here: the 5, a truth value, and the 6). If we replace X by 10, the condition

is fulfilled and the improved "if-then-else" operation returns 5. For X=1, however, the value 6 results.

In the following, the input and output data are illustrated once again using typical examples.

(first) Inputtabment unary operation Outputtabment

pi sin results in 0.

1 4 9 sqrt results in 1. 2. 3.

1 4 9 ++: results in 4.66666666666

160

123456789 '3 results in 123'456'789

First input tab binary operation second input tab Outputtabment

7 + 8 results in 15

7. + 8 results in 15.

1 5 3 + 4 results in 5 9 7

1 5 3 + 1.2 results in 2.2 6.2 4.2

1 5 3 + 3 7 8 results in 4 12 11

1 5 3 + 3 7 not defined

7 9 divrest 3 results in 2,1 3,0

First input tab ternary
operation

second input
tab

 third input
tab

 Outputtabment

"Georg
Cantor"

subtext 1 ! 5 results
in

George

5 if 3=4 (no) ! 6 results
in

6

1 ... 2.9 ! 0.5 results
in

1. 1.5 2. 2.5

1 ..x 2 ! 4 results
in

1 2 1 2

At this point it should be noted that in many cases the result of the previous line counts as the first

input value of an operation:

marks.tab

++:

gives the average of all numbers that occur in the first line marks.tab. marks.tab is the input of ++:

The program

xx.tab

+ 2

adds 2 to each number in table xx.tab. xx.tab is the first input table and 2 is the second. In an

analogous way extracts

names.tab

subtext 3!4

from each text value (TEXT or WORT or ONR) of names.tab a text of length 4 starting at the third

position. Here the ternary subtext operation has the input tabs names.tab, 3 and 4.

In an assignment or condition several operations can be applied one after the other. If all operations

are unary (one-line), then each corresponding one-line term has the form

tbt op11 op12 op13 ... op1n

or more concretely:

1 2 3 sin abs sqrt ++text

If all operations are binary (two digits), the form is

tbt1 op21 tbt2 op22 tbt3 op22 tbt4 ... op2n tbtn+1

or more concrete

1 2 3 + 4 * 5 - 9

Terms with only 3 digit operations are certainly rare. Here is just a constructed example:

161

Magdeburg subtext 2!6 subtext 2!2

results in gd

If brackets are set, they must be calculated first:

abcdefghijk subtext 2!(2+3) results in bcdef

abcdefghijk subtext 2!2+3 on the other hand results in bc

(bc + 3 equals bc)

If you are not quite sure, you can put brackets as a precaution.

+ 3

is not a term, because the operation + has no first input value here. Therefore, an error message

would appear. However, this would not be true if the above code were not on the first line. The value

of the preceding line is then the first input value of + and 3 is then the second input value.

In the following, the designations below are used:

num = ZAHL or PZAHL or RATIO or BAR (|) or stroke list

nonum = TEXT or WORT or ONR

mixe = text and number occur in one column

tbt stands for any tabment type

For the types, we often specify only those that are also changed by the operation.

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

162

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

+ tbt1 +
tbt2→
tbt1

1 1 3 + 2.1
results in
3.1 3.1 5.1
xy ab + de
results in
xyde abde

Addition
of numbers
and
connecting
text

* tbt1 *
num→
tbt1

2 3 5 * 2
results 4 6 10

Multiplica
tion

- tbt1 -
num→
tbt1

3 - 2
results in 1
1'234 - 345
Results 889

Subtractio
n

: tbt1 :
num→
tbt1

3:4
results in 0.75

Division

++ tbt
++→
num

2 3 6 ++
results in 11

Total

** tbt
**→
num

1 3 5 **
results in 15

Product

-- tbt --
→ num

20 5 4 --
results in 11

Multiple
subtractio
n

:: tbt
::→
num

64 2 2 ::
results in 16

Multiple
Division

++: tbt
++:→
PZAHL

1 2 3 2 ++:
results 2.0

Average

++1 tbt
++1→
NUMBER

3 4 7 9 ++1
results in 4

Quantity

++text tbt
++text
→ text

[ab cde fg] ++text results in abcdefg Connect to
text

++texts
ep

TEXTl
++texts
ep
"sep"→
TEXT

ab cde fg
++textsep ";" yields "ab;cde;fg"

combine to
text with
inclusion
of a
separator

163

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

, tbt1,tb
t2→
tbt

1 2,3
results in
COUNTl,COUNT
1 3
2

Pairing

; tbt1;tb
t2→
tbt

2.3 * 2 equals 4.6
2;3 *2 gives 2.6

also a
pair
formation.
but ;
separates
sharper
than ,

,, tbt1,,t
bt2 →
tbt

1 3 ,, xx yy results in
1 xx
3 yy

Multiple
pair
formation

= tbt1,tb
t2→
BOOL

1 = 2
results in
si

Equality

<= tbt1 <=
tbt2→
BOOL

2 <= 2
results si

Less than
or equal
to

>= tbt1 >=
tbt2→
BOOL

2 >= 4
results no

Greater
than or
equal to

+coll coll1
+coll
coll2→
coll1

{{1 2}} +coll {1}
results in
{{1 1 2 }}

"set-
theoretic"
union

-coll coll1 -
coll
coll2→
coll1

[2 4 3 2] -coll [2]
results in
4 3 2

Set
difference

*coll coll1
*coll
coll2→
coll1

{1 2 3} *coll
{4 5}
results in
ZAHL,ZAHL m
1 4
1 5
2 4
2 5
3 4
3 5

Cartesian
product

:coll coll1:c
oll

{1 2 3}:coll [2 3 4]
results in

Intersecti
on

164

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

coll2→
coll1

{2 3}

*l tbt *l
NUMBER
→ tbt
l

car *l 3
results in
car car car
or
xx.tab *l 3

Multiply
element to
list

*mat coll1
*mat
coll2→
coll

(1,2) *mat [2 3]
results in
8

Matrix
multiplica
tion

-1mat coll -
1mat→
coll

<TAB!
X1,X2,X3 l
1 0 2
0 2 0
0 0 8
!TAB>
-1mat
results in
X1, X2, X3 l
 1. -0. -0.25
-0. 0.5 -0.
 0. -0. 0.125

inverse
matrix

& BOOL &
BOOL
-> BOOL

si & no
results in
no

Conjunctio
n (logical
and)

| BOOL |
BOOL
-> BOOL

1=1 | 1=2
results in
si

Disjunctio
n (logical
or)

&& coll1
&&→
BOOL

si,66,si &&
results si

for all

|| coll1
||→
BOOL

1=2,no ||
results no

it exists

|l ZAHL |l
-> BARl

5 |l
results in
| | | | |

Transfer
numbers
into tally
sheets
(for
kindergart
en)

.. number1
..

1 .. 4
results in

from ...
to

165

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

number2
->
numberl

1 2 3 4 generate

... number1
...
number2
!
number3
→
ZAHLl

0 ... 6!2
results in
0 2 4 6

from ...
to ! step

..x number1
...
number2
! ZAHL
->
numberl
→

1 ..x 6!3
results in
5 3 2

Random
numbers
from ..x
to !
number

'3 tbt
'3→
tbt

1234567890
'3
results in
1'234'567'890

format in
blocks of
3

'4 tbt
'4→
tbt

12345.67898
'4
results in
1'2345.6789'8

format in
blocks of
4

^ hoch tbt ^
num→
tbt

4 ^ 1/2
results in
2.
10 *l 4 to the power of (0 ..3) results in
1 10 100 1000

to the
power of

abs tbt
abs→
tbt

-3 7 abs
results in (tabh)
3 7

absolute
amount

aggseg tbt
aggseg
op !
NAME

[(1,2) (3,4)]
aggseg ++ | ZAHL
results in:
ZAHL, ZAHL l
1 2
3 4
4 6

vertical
op-
aggrgation
for all
NAME-
collection
s

aggsegs tbt
aggsegs
op ->
tbt

[(1,2) (3,4)]
aggsegs ++
results in
ZAHL, ZAHL l

In all
collection
s will be
verical

166

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

1 2
3 4
4 6

aggregated

arctan tbt
arctan
-> tbt

1 arctan gives 0.785398163397 (= pi:4) arcus
tangent

at GROSS:=NET +% 19 at NET place new
column to
the right
of the
specified

aus tbt1
from
tbt2
→ tbt2

aus rivers.tabh New start
of a
program

avec tbt1
avec
bed
→ tbt1

rivers.tabh
avec LENGTH >800

Selection
(with)

comp tbt
name→
tbt

<TAB!
NAME,FIRSTNAME,PLACE
Mill Paul Halle
!TAB>
comp PLACE
results in
PLACE
Halle
(see also nth)

Component

cos PZAHL
cos→
PZAHL

pi cos
results in -1.

Cosine

cut TEXT
cut
ZAHL ->
List

qwertzuiop cut 3
results in
qwe
rtz
uio
p

cut a text
in a list
of text of
equal
length

cutspli
t

TEXT
cutspli
t ZAHL
-> List

"qw ert zuio" cutsplit 3
results in
qw
ert
zui
o

cut a text
in pieces
of equal
length,
where the
cut is

167

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

earlier
made when
a blank
exists

det coll
det→
coll

<TAB!
X1,X2,X3 l
1 0 2
0 2 0
0 0 8
!TAB>
det
results in 16.

Determinan
t

div NUMBER
div
NUMBER
→
NUMBER

11 div 5
results in
2

integer
division

divrest NUMBER
divrest
NUMBER
→ Pair

11 divrest 5 results in 2,1
(not 2.1)

integer
division
with
remainder

euler euler euler ^ 3 ln
results in
3.

Euler's
constant

falls term
falls
cond
→ tbt1

1 if 4=4
results in
1?
1 falls 4=3
results in
empty optional value

if with 2
input
values,
in
connection
with gib
certain
joins can
be
expressed
in this
way

for X:= 100 for X pred *1.03 at Y precedes
the second
term of a
recursive
assignment

foronr X:=firstonr 100 foronr X pred *1.03 at Y for for
onr
recursion

168

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

gib tbt1
gib
schema
→ tbt2

aus students.tab
gib FAC,(LOC,NAMEm)m

Restructur
ing of a
tabment
regarding
given
schemas
and
aggregatio
ns

gibl tbt1
gibl
schema
-> tbt2

gibl X,Ym- m
results in tabment with the scheme
X,Yl l
with same content as gib

Is just a
shorthand
notation
for 2 gib
statements

giball tbt1
giball
scheme2
→ tbt2

giball X | Y l
List of all X and Y subtab segments (any
depth);
corresponds to ...//X|Y of XPath

Extraction
of all
correspond
ing values

gibtop tbt1
gibtop
scheme2
→ tbt2

gibtop Xl
corresponds to:
t/X: List of all X-Subtabmente
of t, from the highest level of t.

Extraction
of the top
values

hori tbt
hori
name→
tbt'

<TAB!
SUBJECT,NOTE m
Ger 1
Phy 2
Ma 1
!TAB>
hori SUBJECT
results in
GER, MA, PHY
1 1 2

Arrange
data
horizontal
ly

if tbt if
conditi
on
!tbt2

1 if 1=2 ! 3
results in
3

ternary
operation
that
replaces
"if_then-
else" and
"case".

igib tbt1
igib
scheme2
→ tbt2

students.tab,faks.tab
igib FAK,DEAN,NAMEm m

Join with
restructur
ing

in tbt1 in
tbt2→

"1 2 1" in "1 2"
results in si

Every word
of the

169

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

BOOL "1 2 3" in "1 1 2"
results no

left side
is word of
the right
side

inmath tbt1
inmath
tbt2→
BOOL

[1 3] inmath [1 4 3] gives si
[3 1] inmath [1 4 3]
gives no
2 inmath {6 7 2} gives si

mathematic
al
inclusion;
the left
hand side
determines
, whether
we have a
list, set
or bag
inclusion

keys tbt1
keys
tbt2→
tbt1

Xl:= 1 ..40
Y:=X*X
gib X,Y m
keys [7 34]
results in tab format:
X, Y m
 7 49
34 1156
or
keys [yy,[y2] zz]

Efficient
selection
in sets or
lists

keyslik
e

tbt1
keyslik
e
tbt2→
tbt1

<TAB!
NAME, PLACE m
Clara Oehna
Claudia Dallgow
Sophia Dallgow
!TAB>
keyslike ["*ia"]
results
NAME, PLACE m
Claudia Dallgow
Sophia Dallgow

efficient
selection
in sets or
lists with
partial
matching

leftat

GROSS:=NET +% 19 leftat NET place new
column to
the left
of the
specified
one

like term
like
"term?*
"

Hadmersleben like "?admers*"
results si
'?': represents a character
'*': represents 0 or more characters

similar to

170

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

→
BOOL

linreg tbt
linreg
→
num,num

<TAB!
PRICE,SOLD l
20 0
16 3
15 7
16 4
13 6
10 10
!TAB>
linreg
results in
19.73214,-0.98214

linear
regression

list tbt
list ->
tbt

pi,euler,3.14 list
results in (tab format)
3.14159265359
2.71828182846
3.14

A tuple is
converted
into a
list

lists tbt
lists
zahl →
tbt l

Xl:= 1 2
lists 2
results (tabh format)
Xl l
1 1
1 2
2 1
2 2

Generate a
list of
lists of
specified
length

ln tbt
ln→
PZAHL

euler ln
results in 1.

natural
logarithm

log tbt1
log
tbt2→
PZAHL

100 log 10
results in 2.

general
logarithm

lower tbt
lower→
tbt

AsdRRGee34 lower results in asdrrgee34 turn into
lowercase
letters

max tbt
max→
num

12.21,2,Hello
max
results in
12.21

Maximum of
all
numbers

median tbt
median
→ num

1 2 4.9 median
results in
3.0

Median

171

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

min tbt
min→
num

12.21,2,Hello
min
results in
2

Minimum of
all
numbers

minus tbt
minus -
> tbt

1 -2 4 minus
results in
-1 2 -4

negate any
number

natsel tbt
natsel
-> tbt

students.tab,exams.tab
avec NAME=Ernst
natsel
exams then also contains only exams from Ernst

natural
selection
(regarding
common
column
names)

no no→
BOOL

no | si
results si

Truth
value
false
correspond
s to the
answer no
(Spanish
no)

not BOOL
not→
BOOL

si not
results no

Negation

nth tbt nth
NUMBER
→ tbt'

1 3 5 nth 2 results in 3 nth
component

nthpred Name
nthpred
NUMBER
→ term

Xl:= 1 2 3 4
Y:= X nthpred 2
results in
X,Y? l
1
2
3 1
4 2

n-th
predecesso
r

nthsucc tbt
nthsucc
NUMBER
→ tbt'

Xl:=2 4 7 4 3 4 4
avec X nthsucc 2=4
results in (tabh)
4 4 3

n-th
successor

nthzahl tbt nth
number
NUMBER
→ tbt'

"2023.03.26" nthzahl 3
results in
26

nth number
in a text

onr tbt 1 3 5.2 "4.5.5" onr Conversion

172

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

onr→
tbt

results (tabh):
1 3 5.2 4.5.5

to o++o
number

onrs tbt
onrs
name !
element
→ tbt'

<TAB!
X,Ym m
k y
 z
y w
!TAB>
onrs OTTO!k
results
X, (OTTO, Y m) l
k 1 z
 2 y
 2.1 w

generates
o++o
numbers in
a table;
this is an
important
component
of BOM
explosion.

permuta
tions

list
permuta
tions
->
listl

2 4 9
permutations
results in (tabh)
ZAHLl l
2 4 9
2 9 4
4 2 9
4 9 2
9 2 4
9 4 2

"permutati
ons" is an
abbreviati
on for the
program:
Xl:= 2 4 9
lists 3
avec Xm=
{2 4 9}

pi pi→
PZAHL

CIRCULAR AREA:=R*R*pi Circle
number

poly num
poly
list→
num

3 poly [1 2 3]
results in
18

Polynomial

pos Name
pos→
NUMBER

avec X pos < 10 Position

pos- Name
pos-→
NUMBER

avec X pos- > 5 Position
from
behind

pred Name
pred→
term

X:= 100
for X pred *1.03

Predecesso
r

preds preds
→ tbt

 Abbreviati
on of
X pred, Y
pred, …

primo tbt 1 3;4;7 8 9 Select

173

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

primo -
> tbt

primo
results in (tab)
1 4 7

first
element of
each
collection

pzahl tbt
pnumber
→
PZAHL

1/5 6 9.7 pzahl
results in (tabh)
0.2 6. 9.7

Conversion
to a PZAHL

pzahl1d
e

tbt
pzahl1d
e→
PZAHL

"Today I get 356.88 euros
and not 66.8 ."
pzahl1de
results in
356.88

First
PZAHL of a
German
text

rat ZAHL
rat
ZAHL→
RATIO

<TAB!
X,Yl l
1 2
 3
!TAB>
Z:= X rat Y
results in
X,(Y, Z l) l
1 2 1/2
 3 1/3

Conversion
of two
numbers
into one
RATIO
number

ratio num
ratio→
RATIO

1/5 6 9.7 ratio
results in (tabh)
1/5 6/1 97/10

Conversion
to
rational
number

rename tbt
rename
Name1 !
name2→
tbt'

rename X!Y Renaming
column
names

rest NUMBER
rest
NUMBER
→
NUMBER

13 rest 5
results in
3

Remainder
for
integer
division

rnd PZAHL
rnd
ZAHL→
PZAHL

17,678 3.45 zz 8 rnd 1
results in
17.7 3.5 zz 8

round

route tbt
route→
tbt

<TAB!
X,Y m
0 0

Generate
straight
line

174

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

1 1
0 1
!TAB>
route
generates 2 lines from (0,0) to (1,1) and from
(1,1) to (0,1)

sequence
from point
sequence

sans tbt
sans
cond
→ tbt

sans LOC=Magdeburg
sans Magdeburg
sans: without the specified struples

Selection
(without)

satzl TEXT
satzl
TEXTl

"It's great. Great. Tomorrow we celebrate."
satzl
results (tabh-format):
SATZl
It's great.
Great.
Tomorrow we celebrate.

List of
sentences

seg NAME
seg→
term

<TAB!
X,Y,Z,U,Vl l
1 2 3 4 5
 6
6 7 8 9 10
 11
!TAB>
SUM:= Z seg ++
results in (tabh)
X ,Y ,Z ,SUM ,U ,Vl l
1 2 3 7 4 5 6
6 7 8 17 9 10 11

segment
from
position
NAME

sepl constant
list,
useful to
understa
nd exactly
the
operation
cil (split
into
words)

"." ";" "," "|" "!" "?" "(" ")" "@" "#" "\n" "-" " " all separators
used in the
cil operation

si si→
BOOL

si & no
results in
no

Truth
value true
(answer
yes (=si))

sin PZAHL
sin→

3.14159 sin
results in

Sine
function

175

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

PZAHL 2.65358979335e-06

split TEXT
split
"sep"→
TEXTl

Xl:= "Brati,Novi Sad, Belgrade" split ","
result (ment):
<TABM>
 <X>Brati</X>
 <X>Novi Sad</X>
 <X>Belgrade</X>
</TABM>

Decompose
text

splitfu
ll

tbt
splitfu
ll→
WORTl

"We live in Halle, a city in Saxony-Anhalt".
splitfull
results (ment)
<TABM>
We
live
in
Hall
a
City
in
Saxony
Anhalt
</TABM>

List of
all words,
where the
following
separators
are given:
" " . , ;
- | / ! ?
() @ #
"\n" (end
of line)

splitfu
llm

tbt
splitfu
llm→
WORTm

"We live in Halle, a city in Saxony-Anhalt".
splitfullm
results in (tabh)
WORTm
anhalt hall saxony city we one in live

Set of all
words,
where the
following
separators
are given:
" " . , ;
- | / ! ?
() @ #
"\n" (end
of line)

splitse
p

TEXT
splitse
p
"sep"→
TEXTl

Xl:= "Brati,Novi Sad, Belgrade" splitsep ","
result (ment):
<TABM>
 <X>Brati</X>
 <X>,</X>
 <X>Novi Sad</X>
 <X>,</X>
 <X> Belgrade</X>
</TABM>

Decompose
text, not
deleting
the
separator

sqrt num
sqrt→
PZAHL

4 sqrt
results in
2.

Square
root

176

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

mad
streu

tbt
scatter
→
PZAHL

[1 2 5 3 5 1] mad
results in
1.5

Scattering

subtext text
subtext
NUMBER
!
NUMBER
→ TEXT

aBCdE subtext 2 ! 3
results in BCd

Subtext
(substring
)

subtext
2

text
subtext
2 text
!
text→
TEXT

aBCdEfgh subtext2 "B"!fg
results in CdE

Partial
text of
the first
text that
lies
between
the other
two given
texts.

succ Name
succ→
term

NOTEl:= 3 1 2 1
avec NOTE >NOTE succ
results in
NOTEl
3 2

Successor

tag tbt tag
NAME!sc
heme
→ tbt'

LOCATION:=Magdeburg
STREET:=Beims
tag ADDRESS!LOCATION,STREET
results (metadata)
TABMENT ! ADDRESS
ADDRESS ! LOCATION,STREET
LOCATION ! WORT
STREET ! WORT

enclose
data of a
schema
with a tag

tag0 tbt
tag0
name→
tbt'

11 13 tag0 XX
results (ment)
<XX>
11
13
</XX>

Put a tag
around the
entire
tabment

tan num
tan→
PZAHL

3.14 tan
results in
-0.00159265493641

Tangent
function

text mixe
text→
TEXT

3.14 ttt 8
text
results in
TEXTl

Transform
any
elementary
type to

177

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

3.14 ttt 8 TEXT.

textend tbt
textend
NUMBER
→ TEXT

asdfgh text end 4
results fgh
abcde textend -2
Results de

subtext
counted
from back

textind
ex

text
mixe
text→
NUMBER

"Today is Tuesday."
text index Di
results in
NUMBER
11

Position

time time→
PZAHL

time
could result:
1.557021

system
time (only
the
difference
between
two such
times is
significan
t for
efficiency
considerat
ions)

trim text
trim→
text

" Hi o++o " trim
results (ment)
<TABM>Hi o++o</TABM>

remove
spaces at
the back
and front

tup NAME
tup→
term

<TAB!
X,Y,Z,U,Vl l
1 2 3 4 5
 6
6 7 8 9 10
 11
!TAB>
SUM:= Z tup ++
Results in (tabh)
X ,Y ,Z ,SUM ,U ,Vl l
1 2 3 18 4 5 6
6 7 8 38 9 10 11

a whole
struple
from
position
NAME

ultimo tbt
ultimo
->
tbt

1 2 4, 5 ultimo
results in (tab)
ZAHLl, ZAHL
4 5

from each
collection
preserve
only the
last
element

untag0 tbt X:=1 remove the

178

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

untag0
→ tbt'

untag0
results in
NUMBER
1

outermost
day

upper text
upper→
text

1.2,aW upper
results (tab-format)
PZAHL, WORD
1.2 AW

convert to
uppercase

varianc
e

tbt
varianc
e→
PZAHL

[1 2 4 6] variance
results in
4.91666666667

Variance

verti tbt
verti
coll:=t
up→
tbt'

verti MON,XX l:=JAN ..DEC
verti SUBJECT,MARKl l:=
PHYl ..MATHl

Arrange
data
vertically

vlists tbt
vlists
ZAHL→
tbt l

variable-length lists; the operation
generates the same as "lists" except that all
shorter lists also appear in the result.

Variable
length
lists

weg tbt
weg
names
→ tbt'

<TABH!
X,Ym m
1 2 3
4 5
!TABH>
weg Y
results (tab-format)
Xm
1
4

Omitting
columns

wort tbt
wort→
wort

"I'm good.So are you."
word
results in
WORT
I_am_good.You_too.

Convert to
words

zahl num
zahl→
ZAHL

"12" zahl
results in
12

3.14 zahl
results in
3

Conversion

zahltri text DAY,MON,YEAR:= The first

179

Operati

on
symbol

Notatio
n:

Input→
Result
type

Examples Meaning

p zahltri
p ->
Triples
of
numbers

 26.03.1963 zahltrip
results in
DAY,MON,YEAR
26 3 1963

3 numbers
of a text

zil tbt
zil→
tbt'

123,Today
zil
results in (tabh)
1 2 3, H e u t e

List of
all
characters
(letters+d
igits+
special
characters
)
(zi
Chinese:
character)

zahlrat
io

RATIO
zahlrat
io ->
ZAHL,RA
TIO

33/7 zahlratio
results in
4 5/7

Convert to
integer
part and
real
fraction

zahl1de text
number1
en→
NUMBER

"Today I get 66,356.11 euros".
zahl1de
results in
66356

extract
first
number
from a
German
text

180

21 Appendix B: Grammar

%start main
%token ABS abs
%token ADDAGGS addaggs
%token ALL &&
%token ALLSEGS allsegs
%token AND &
%token APO3 '3
%token APO4 '4
%token ARCTAN arctan
%token AT at
%token ATOM atom
%token AUS aus
%token AUSRUFE !
%token AVEC avec
%token AVG ++:
%token BAR |
%token BARL |l
%token BE hoch ^
%token BEGIN begin
%token BOOL
%token CART *coll
%token COLL l m b l- m- b- a ?
%token COMMA ,
%token COMP comp
%token CONTENT1
%token CONTENT2
%token COS cos
%token COUNT ++1
%token COUNTSTROKE ++|
%token CREATE create
%token CSV csv
%token CSVTABLE
%token CUT cut
%token CUTSPLIT cutsplit
%token DCOMMA ,,
%token DDDOT ...
%token DDOT ..
%token DDOTX ..x
%token DEFOP defop
%token DELETE delete
%token DET det
%token DIV :
%token DIVBIGINT div
%token DIVDIV ::
%token DIVREST divrest
%token DOLLAR $
%token DOLLAR2 $$
%token DSEMI ;;
%token END end
%token EOF
%token EOL ; "\n"
%token EQ =

181

%token EQ2 ==
%token EQUI <->
%token EULER euler
%token EX ||
%token EXCEPT -coll
%token FALLS if
%token FLOAT float
%token FUNNAME myop. ..
%token GE >=
%token GE2 >=>=
%token GIB gib
%token GIBALL giball
%token GIBL gibl
%token GIBTOP gibtop
%token GT >
%token GT2 >>
%token HORI hori
%token HSQ hsq
%token HSQH hsqh
%token HSQTABLE
%token HSQTABLEH
%token IF if
%token IGIB igib
%token IMPLI ->
%token IMPLIR ::=
%token IN in
%token INCLUDE include
%token INMATH inmath
%token INSERT insert
%token INSIDE inside
%token INTEGER
%token INTERSECT :coll
%token INVERSMAT -1mat
%token IS :=
%token JPG jpg
%token JSON json
%token JSONTABLE
%token KEYS keys
%token KEYSLIKE keyslike
%token LBRACK [
%token LCURL {
%token LCURL2 {{
%token LE <=
%token LE2 <=<=
%token LEFTAT leftat
%token LETTERL zil
%token LIKE like
%token LINREG linreg
%token LISTS lists
%token LN ln
%token LOAD load
%token LOG log
%token LOWER lower
%token LPAREN (
%token LT <

182

%token LT2 <<
%token MAD mad streu
%token MAL *l
%token MANT mant
%token MAX max
%token MEDIAN median
%token MENT ment
%token MENTTABLE
%token MIN min
%token MINUS -
%token MINUSMINUS --
%token MINUSOP1 minus
%token MINUSPLUS -+
%token MINUSPROZENT -%
%token MIXE
%token MOD rest
%token MULT *
%token MULTKOMPLEX *i
%token MULTMAT *mat
%token NAME
%token NAMEC ..m ..l ..b
%token NAMECMINUS ..m- ..l- ..b-
%token NATJOIN natjoin
%token NATSEL natsel
%token NE !=
%token NE2 !=!=
%token FOR for
%token FORONR foronr
%token NINTEGER
%token NO no
%token NORM10E norm3e
%token NORM10M norm3m
%token NORMT normt
%token NOT not
%token NTH nth
%token NTHZAHL nthzahl
%token NUMMER num
%token NUR nur
%token ONEIN 1in
%token ONEINMATH 1inmath
%token ONR onr
%token ONR2 onr2
%token ONRS onrs
%token OR |
%token PATHNAME
%token PERMUTATIONS permutations
%token PI pi
%token PLUS +
%token PLUSPLUSTEXT ++text
%token PLUSPLUSTEXT2 ++textsep
%token PLUSPROZENT +%
%token POLY poly
%token POS pos
%token POS2 pos-
%token PRED pred

183

%token PREDTUP predtup
%token PREDS preds
%token PRED_N nthpred
%token PRIMO primo
%token PROD **
%token PROZENT %
%token PZAHL pzahl
%token PZAHL1DE pzahl1de
%token RAM ram
%token RAT rat
%token RATIO ratio
%token RATIOTYPE ratio
%token RBRACK]
%token RCURL }
%token RCURL2 }}
%token RENAME rename
%token REONR reonr
%token RGB rgb
%token ROTATE rotate
%token ROUND rnd
%token ROUTE route
%token RPAREN)
%token RPOS pos-
%token RPOS2 rpos2
%token SANS sans
%token SATZL satzl
%token SAVE save
%token SEG seg
%token SEMI ;
%token SEPL sepl
%token SI si
%token SIN sin
%token SPLIT split
%token SPLITSEP splitsep
%token SQRT sqrt
%token STANDARD standard
%token STRICH ~
%token STRING
%token STRING2
%token STRING3
%token SUBTEXT subtext
%token SUBTEXT2 subtext2
%token SUCC succ
%token SUCCTUP succtup
%token SUCC_N nthsucc
%token SUM ++
%token TAB tab
%token TABH tabh
%token TABLE
%token TABLEH
%token TAG tag
%token TAG0 tag0
%token TAGALL tagall
%token TAN tan
%token TEXT text

184

%token TEXTEND textend
%token TEXTINDEX textindex
%token TIME time
%token TOANY 2any
%token TRANSPOSE transpose
%token TREE tree
%token TRIM trim
%token TUP tup
%token TXT txt
%token TXTTABLE
%token ULTIMO ultimo
%token UNION +coll
%token UNTAG untag
%token UNTAG0 untag0
%token UNTAGALL untagall
%token UPDATE update
%token UPPER upper
%token VARIANCE variance
%token VERTI verti
%token VLISTS vlists
%token WAS =:
%token WEG weg
%token WEGE wege
%token WEGECYC wegecyc
%token WHILE while
%token WIKI wiki
%token WORT wort
%token WORTL cil
%token WORTM cim
%token XML xml
%token XMLTABLE
%token ZAHL zahl
%token ZAHL1DE zahl1de
%token ZAHLRATIO zahlratio
%token ZAHLTRIP zahltrip

%left SEMI
%left AND EQUI IMPLI OR
%left EQ GE GT IN INMATH LE LIKE LT NE ONEIN ONEINMATH
%left ABS ADDAGGS ALL APO3 APO4 ARCTAN AVG BARL BE CART COLL COMMA COMP COS
COUNT COUNTSTROKE CREATE DCOMMA DDDOT DDOT DDOTX
 DELETE DET DIV DIVBIGINT DIVDIV DIVREST EQ2 EX EXCEPT FALLS
 FILLPOLYGON FUNNAME GE2 GIB GIBALL GIBTOP GT2 HORI INSERT INSIDE
INTERSECT INVERSMAT KEYS KEYSLIKE LE2
 LETTERL LINREG LISTS LN LOAD LOG LOWER LT2 MAD MAL MANT MAX MEDIAN MIN
MINUS MINUSMINUS MINUSOP1
 MINUSPLUS MINUSPROZENT MOD MULT MULTKOMPLEX MULTMAT NATJOIN NATSEL NE2
NORM10E NORM10M NORMT NOT NTH NTHZAHL
 NUMMER ONR PERMUTATIONS PLUS PLUSPLUSTEXT PLUSPLUSTEXT2 PLUSPROZENT POLY
PRED_N PRIMO PROD PROZENT PZAHL PZAHL1DE RAT RATIO
 REONR RGB ROTATE ROUND ROUTE SATZL SAVE SIN SPLIT SPLITSEP SQRT STANDARD
SUBTEXT SUBTEXT2 SUCC_N SUM TAG TAG0 TAGALL TAN
 TEXT
 TEXTEND TEXTINDEX TOANY TRANSPOSE TREE TRIM ULTIMO UNION UNTAG UNTAG0
UNTAGALL UNTAGTOPEXCEPTFORMAT UPDATE UPPER VARIANCE

185

 VERTI VLISTS WEGE WEGECYC WORT WORTL WORTM ZAHL ZAHL1DE ZAHLRATIO
ZAHLTRIP CUT CUTSPLIT
%type <unit> Agg
%type <unit> Bars
%type <unit> Command
%type <unit> Command2
%type <unit> CommandList
%type <unit> CommandListCore
%type <unit> Expr
%type <unit> Expr_list
%type <unit> FpathName
%type <unit> FpathNames
%type <unit> Istroke
%type <unit> Name2
%type <unit> Names
%type <unit> Oper1
%type <unit> Oper2
%type <unit> Oper2_all
%type <unit> Oper2_lt
%type <unit> Oper2_mal
%type <unit> Oper2_name
%type <unit> Oper2_names
%type <unit> Oper2_or
%type <unit> Oper2_plus
%type <unit> Oper2_ram
%type <unit> Oper2_scheme
%type <unit> Oper2_scheme_standalone
%type <unit> Oper2_textsep
%type <unit> Oper2_union
%type <unit> Oper3
%type <unit> Oper3_onrs
%type <unit> Oper3_scheme
%type <unit> Oper3_zufall
%type <unit> Operfolge
%type <unit> PathName
%type <unit> PathNames
%type <unit> Ram_expr
%type <unit> Scheme
%type <unit> SchemeIs
%type <unit> Sel3
%type <unit> Simpleagg
%type <unit> Strich
%type <unit> Stroke
%type <unit> Tableexpr
%type <unit> Tableexpr_c
%type <unit> Tableexpr_file
%type <unit> Trenner
%type <unit> Value
%type <unit> Valuelist
%type <unit> Where2
%type <unit> main
%%

main:
 CommandList EOF

186

| EOF

CommandList:
 CommandListCore
| Trenner CommandList

CommandListCore:
 Command
| CommandListCore Trenner Command2
| CommandListCore Trenner

Command:
 Command2
| Expr

Trenner:
 EOL
| DSEMI

Command2:
 AUS Expr
| AUS SchemeIs Expr
| DEFOP DOLLAR NAME FUNNAME EQ Command
| INCLUDE Expr
| WAS DOLLAR NAME
| WAS DOLLAR2 NAME
| DOLLAR NAME IS Expr
| DOLLAR2 NAME IS Expr
| SchemeIs Expr Where2
| Operfolge
| Oper2_all Expr
| Oper2_name NAME
| Oper2_names PathNames
| Oper3_scheme Scheme IS Scheme DDOT Scheme
| TAG NAME AUSRUFE Scheme
| Oper3_onrs NAME AUSRUFE Expr
| Oper2_ram RAM
| Oper2_scheme_standalone Scheme
| Oper3 Expr AUSRUFE Expr
| ADDAGGS NAME AUSRUFE Oper1
| SAVE Tableexpr_file
| Stroke
| Istroke
| SchemeIs Expr FOR Expr Where2
| SchemeIs Expr FORONR Expr Where2
| SchemeIs Expr WHILE Expr AUSRUFE Expr Where2
| Sel3 Expr
| Sel3 PathNames AUSRUFE Expr
| PathName IMPLIR Expr
| RENAME PathName AUSRUFE NAME
| WEG PathNames
| NUR PathNames
| Agg Expr

Where2:

187

| AT FpathNames
| LEFTAT FpathNames

Sel3:
 AVEC
| SANS

Stroke:
 GIB Scheme
| Stroke NAME EQ Scheme
| Stroke ATOM DIV Scheme
| Stroke NAME IS Expr AUSRUFE Agg

Strokel:
 GIBL Scheme
| Strokel NAME EQ Scheme
| Strokel ATOM DIV Scheme
| Strokel NAME IS Expr AUSRUFE Agg

Istroke:
 IGIB Scheme
| Istroke NAME IS Expr AUSRUFE Agg
| Istroke NAME AUSRUFE Simpleagg

Scheme:
 Scheme COLL
| LPAREN Scheme RPAREN
| Scheme COMMA Scheme %prec PLUS
| Scheme OR Scheme %prec PLUS
| Name2
| MIXE
| NAMEC
| NAMECMINUS

Agg:
 Simpleagg
| AVG
| COUNT
| VARIANCE
| MAD
| MEDIAN
| LINREG
| COUNTSTROKE

Simpleagg:
 SUM
| MAX
| MIN
| PROD
| EX
| ALL

Names:
 NAME COMMA Names
| NAME

188

SchemeIs:
 Scheme IS

PathName:
 PATHNAME
| NAME

PathNames:
 PathName PathNames
| PathName

FpathName:
 PATHNAME
| NAME
| NAMEC

FpathNames:
 FpathName FpathNames
| FpathName

Name2:
 NAME
| ZAHL
| PZAHL
| RATIO
| TEXT
| WORT
| BOOL
| BAR
| ONR

Ram_expr:
 WIKI

Expr_list:
 Expr
| Expr_list Expr

Expr:
 NAME
| PATHNAME
| NAME Strich
| NAME PREDTUP
| NAME SUCCTUP
| NAME SUCC_N Expr
| NAME PRED_N Expr
| NAME PRED
| NAME SUCC
| Ram_expr
| Expr Oper2_ram RAM
| Expr SAVE NAME
| Expr Oper2_name NAME
| Expr Oper2_names Names
| Expr Oper3_scheme Scheme IS Scheme DDOT Scheme

189

| Expr TAG NAME AUSRUFE LPAREN Scheme RPAREN
| DOLLAR NAME
| DOLLAR2 NAME
| TIME
| LPAREN Expr RPAREN
| LBRACK Expr_list RBRACK
| LBRACK Bars RBRACK
| LCURL Expr_list RCURL
| LCURL2 Expr_list RCURL2
| LBRACK RBRACK
| LCURL RCURL
| LCURL2 RCURL2
| LBRACK Valuelist RBRACK
| LCURL Valuelist RCURL
| LCURL2 Valuelist RCURL2
| LBRACK Names AUSRUFE Expr DDOTWHILE Expr RBRACK
| LBRACK Names AUSRUFE Expr DDDOTWHILE Expr AUSRUFE Expr RBRACK
| Expr IF Expr
| Expr Oper3 Expr AUSRUFE Expr %prec PLUS
| Expr ADDAGGS NAME AUSRUFE Oper1 %prec PLUS
| OR MAL Expr
| Expr Oper2_or Expr %prec AND
| Expr Oper2_lt Expr %prec LT
| Expr Oper2 Expr %prec PLUS
| Expr Oper1
| Expr FUNNAME
| Expr Oper2_scheme Scheme
| NAME POS
| PATHNAME POS
| NAME RPOS
| PATHNAME RPOS
| NAME POS2
| PATHNAME POS2
| NAME RPOS2
| PATHNAME RPOS2
| NAME TUP
| PATHNAME TUP
| NAME SEG
| PATHNAME SEG
| NAME ALLSEGS
| PATHNAME ALLSEGS
| NAMEC
| NAMECMINUS
| BEGIN CommandList END
| Tableexpr
| Value
| Valuelist

Tableexpr:
 Tableexpr_c
| Tableexpr_file

Tableexpr_c:
 TABLE
| TABLEH

190

| XMLTABLE
| MENTTABLE
| JSONTABLE
| CSVTABLE
| HSQTABLE
| HSQTABLEH
| TXTTABLE
| RAM

Tableexpr_file:
 TAB
| XML
| TABH
| CSV
| HSQ
| HSQH
| TXT
| MENT
| JSON
| FREL
| QRY
| JPG

Strich:
 STRICH
| Strich STRICH

Bars:
 OR
| Bars OR

Value:
 NINTEGER
| INTEGER
| FLOAT
| ONR2
| RATIOTYPE
| PI
| EULER
| SEPL
| STRING
| STRING2
| STRING3
| SI
| NO

Valuelist:
 Value Valuelist
| Value Value

Operfolge:
 Oper1
| Oper1 Operfolge

Oper1:

191

 SUM
| ALL
| EX
| MAX
| MIN
| COUNT
| ZAHLTRIP
| COUNTSTROKE
| PROD
| ZAHLRATIO
| AVG
| DIVDIV
| MINUSMINUS
| VARIANCE
| MAD
| MEDIAN
| LINREG
| TRANSPOSE
| PLUSPLUSTEXT
| TEXT
| WORT
| ONR
| UPPER
| LOWER
| TRIM
| ZAHL
| SATZL
| LETTERL
| WORTL
| WORTM
| PZAHL
| INVERSMAT
| DET
| PERMUTATIONS
| NUMMER
| ZAHL1DE
| PZAHL1DE
| APO3
| APO4
| NORMT
| NORM10E
| NORM10M
| STANDARD
| ABS
| UNTAG0
| TOANY
| MINUSOP1
| ROUTE
| NATSEL
| NATJOIN
| SQRT
| SIN
| COS
| TAN
| ARCTAN

192

| LN
| RATIO
| NOT
| CREATE
| PRIMO
| ULTIMO
| RGB
| REONR
| UNTAGALL
| BARL

Oper2_all:
 Oper2
| Oper2_lt
| Oper2_or

Oper2:
 Oper2_union
| Oper2_plus
| Oper2_textsep
| Oper2_mal
| NTH
| NTHZAHL
| RAT
| MINUS
| MULTMAT
| MULTKOMPLEX

Oper2_mal:
 DDOT
| MAL
| PLUSPROZENT
| PROZENT
| MINUSPROZENT

Oper2_or:
 OR
| AND
| IMPLI
| EQUI

Oper2_union:
 UNION
| EXCEPT
| INTERSECT
| CART
| KEYS
| KEYSLIKE
| ROUND
| MANT
| LISTS
| VLISTS
| WEGE
| TREE
| ROTATE

193

| POLY
| TEXTEND
| TEXTINDEX
| LOAD
| SPLIT
| CUT
| CUTSPLIT
| SPLITSEP
| DCOMMA
| COMMA

Oper3:
 SUBTEXT
| SUBTEXT2
| MINUSPLUS
| Oper3_zufall
| INSIDE
| FALLS
| WEGECYC

Oper3_zufall:
 DDDOT
| DDOTX

Oper2_lt:
 LT
| GT
| LE
| GE
| NE
| EQ
| LT2
| GT2
| LE2
| GE2
| EQ2
| NE2
| IN
| INMATH
| ONEIN
| ONEINMATH
| LIKE
| SEMI

Oper2_plus:
 PLUS
| MULT
| DIV
| MOD
| DIVREST
| DIVBIGINT
| LOG
| BE

194

Oper2_textsep:
 PLUSPLUSTEXT2

Oper2_name:
 TAG0
| TAGALL
| COMP
| HORI

Oper2_names:
 UNTAG

Oper2_ram:
 INSERT
| UPDATE
| DELETE

Oper2_scheme:
 Oper2_scheme_standalone
| GIB

Oper2_scheme_standalone:
 GIBALL
| GIBTOP

Oper3_scheme:
 VERTI

Oper3_onrs:
 ONRS

%%

22 Appendix C: List of o++o color names

"aliceblue",(0.941176470588,0.972549019608,1.);
"antiquewhite",(0.980392156863,0.921568627451,0.843137254902);
"aquamarine",(0.498039215686,1.,0.83137254902);
"azure",(0.941176470588,1.,1.);
"beige",(0.960784313725,0.960784313725,0.862745098039);
"bisque",(1.,0.894117647059,0.76862745098);
"black",(0.,0.,0.);
"blanchedalmond",(1.,0.921568627451,0.803921568627);
"blue",(0.,0.,1.);
"blueviolet",(0.541176470588,0.16862745098,0.886274509804);
"brown",(0.647058823529,0.164705882353,0.164705882353);
"burlywood",(0.870588235294,0.721568627451,0.529411764706);
"cadetblue",(0.372549019608,0.619607843137,0.627450980392);
"chartreuse",(0.498039215686,1.,0.);

195

"chocolate",(0.823529411765,0.411764705882,0.117647058824);
"coral",(1.,0.498039215686,0.313725490196);
"cornflowerblue",(0.392156862745,0.58431372549,0.929411764706);
"cornsilk",(1.,0.972549019608,0.862745098039);
"cyan",(0.,1.,1.);
"darkgoldenrod",(0.721568627451,0.525490196078,0.043137254902);
"darkgreen",(0.,0.392156862745,0.);
"darkkhaki",(0.741176470588,0.717647058824,0.419607843137);
"darkolivegreen",(0.333333333333,0.419607843137,0.18431372549);
"darkorange",(1.,0.549019607843,0.);
"darkorchid",(0.6,0.196078431373,0.8);
"darkred",(0.5450,0.,0.);
"darksalmon",(0.913725490196,0.588235294118,0.478431372549);
"darkseagreen",(0.560784313725,0.737254901961,0.560784313725);
"darkslateblue",(0.282352941176,0.239215686275,0.545098039216);
"darkslategray",(0.18431372549,0.309803921569,0.309803921569);
"darkturquoise",(0.,0.807843137255,0.819607843137);
"darkviole",(0.580392156863,0.,0.827450980392);
"deeppink",(1.,0.078431372549,0.576470588235);
"deepskyblue",(0.,0.749019607843,1.);
"dimgrey",(0.411764705882,0.411764705882,0.411764705882);
"dodgerblue",(0.117647058824,0.564705882353,1.);
"firebrick",(0.698039215686,0.133333333333,0.133333333333);
"floralwhite",(1.,0.980392156863,0.941176470588);
"forestgreen",(0.133333333333,0.545098039216,0.133333333333);
"gainsboro",(0.862745098039,0.862745098039,0.862745098039);
"ghostwhite",(0.972549019608,0.972549019608,1.);
"gold",(1.,0.843137254902,0.);
"goldenrod",(0.854901960784,0.647058823529,0.125490196078);
"green",(0.,1.,0.);
"greenyellow",(0.678431372549,1.,0.18431372549);
"grey",(0.745098039216,0.745098039216,0.745098039216);
"honeydew",(0.941176470588,1.,0.941176470588);
"hotpink",(1.,0.411764705882,0.705882352941);
"indianred",(0.803921568627,0.360784313725,0.360784313725);
"ivory",(1.,1.,0.941176470588);
"lavender",(0.901960784314,0.901960784314,0.980392156863);
"lavenderblush",(1.,0.941176470588,0.960784313725);
"lawngreen",(0.486274509804,0.988235294118,0.);
"lemonchiffon",(1.,0.980392156863,0.803921568627);
"lightblue",(0.678431372549,0.847058823529,0.901960784314);
"lightcoral",(0.941176470588,0.501960784314,0.501960784314);
"lightcyan",(0.878431372549,1.,1.);
"lightgoldenrod",(0.933333333333,0.866666666667,0.509803921569);
"lightgray",(0.827450980392,0.827450980392,0.827450980392);
"lightpink",(1.,0.713725490196,0.756862745098);
"lightsalmon",(1.,0.627450980392,0.478431372549);
"lightseagreen",(0.125490196078,0.698039215686,0.666666666667);
"lightskyblue",(0.529411764706,0.807843137255,0.980392156863);
"lightslateblue",(0.517647058824,0.439215686275,1.);
"lightslategray",(0.466666666667,0.533333333333,0.6);
"lightsteelblue",(0.690196078431,0.76862745098,0.870588235294);
"lightyellow",(1.,1.,0.878431372549);

196

"limegreen",(0.196078431373,0.803921568627,0.196078431373);
"linen",(0.980392156863,0.941176470588,0.901960784314);
"ltgoldenrodyello",(0.980392156863,0.980392156863,0.823529411765);
"magenta",(1.,0.,1.);
"maroon",(0.690196078431,0.188235294118,0.376470588235);
"mediumaquamarine",(0.4,0.803921568627,0.666666666667);
"mediumblue",(0.,0.,0.803921568627);
"mediumorchid",(0.729411764706,0.333333333333,0.827450980392);
"mediumpurple",(0.576470588235,0.439215686275,0.858823529412);
"mediumseagreen",(0.235294117647,0.701960784314,0.443137254902);
"mediumslateblue",(0.482352941176,0.407843137255,0.933333333333);
"mediumturquoise",(0.282352941176,0.819607843137,0.8);
"mediumvioletred",(0.780392156863,0.0823529411765,0.521568627451);
"medspringgreen",(0.,0.980392156863,0.603921568627);
"midnightblue",(0.0980392156863,0.0980392156863,0.439215686275);
"mintcream",(0.960784313725,1.,0.980392156863);
"mistyrose",(1.,0.894117647059,0.882352941176);
"moccasin",(1.,0.894117647059,0.709803921569);
"navajowhite",(1.,0.870588235294,0.678431372549);
"navyblue",(0.,0.,0.501960784314);
"oldlace",(0.992156862745,0.960784313725,0.901960784314);
"olivedrab",(0.419607843137,0.556862745098,0.137254901961);
"orange",(1.,0.647058823529,0.);
"orangered",(1.,0.270588235294,0.);
"orchid",(0.854901960784,0.439215686275,0.839215686275);
"palegoldenrod",(0.933333333333,0.909803921569,0.666666666667);
"palegreen",(0.596078431373,0.98431372549,0.596078431373);
"paleturquoise",(0.686274509804,0.933333333333,0.933333333333);
"palevioletred",(0.858823529412,0.439215686275,0.576470588235);
"papayawhip",(1.,0.937254901961,0.835294117647);
"peachpuff",(1.,0.854901960784,0.725490196078);
"peru",(0.803921568627,0.521568627451,0.247058823529);
"pink",(1.,0.752941176471,0.796078431373);
"plum",(0.866666666667,0.627450980392,0.866666666667);
"powderblue",(0.690196078431,0.878431372549,0.901960784314);
"purple",(0.627450980392,0.125490196078,0.941176470588);
"red",(1.,0.,0.);
"rosybrown",(0.737254901961,0.560784313725,0.560784313725);
"royalblue",(0.254901960784,0.411764705882,0.882352941176);
"saddlebrown",(0.545098039216,0.270588235294,0.0745098039216);
"salmon",(0.980392156863,0.501960784314,0.447058823529);
"sandybrown",(0.956862745098,0.643137254902,0.376470588235);
"seagreen",(0.180392156863,0.545098039216,0.341176470588);
"seashell",(1.,0.960784313725,0.933333333333);
"sienna",(0.627450980392,0.321568627451,0.176470588235);
"silver",(0.898039215686, 0.898039215686, 0.898039215686);
"skyblue",(0.529411764706,0.807843137255,0.921568627451);
"slateblue",(0.41568627451,0.352941176471,0.803921568627);
"slategrey",(0.439215686275,0.501960784314,0.564705882353);
"snow",(1.,0.980392156863,0.980392156863);
"springgreen",(0.,1.,0.498039215686);
"steelblue",(0.274509803922,0.509803921569,0.705882352941);
"tan",(0.823529411765,0.705882352941,0.549019607843);

197

"thistle",(0.847058823529,0.749019607843,0.847058823529);
"tomato",(1.,0.388235294118,0.278431372549);
"turquoise",(0.250980392157,0.878431372549,0.81568627451);
"violet",(0.933333333333,0.509803921569,0.933333333333);
"violetred",(0.81568627451,0.125490196078,0.564705882353);
"wheat",(0.960784313725,0.870588235294,0.701960784314);
"white",(1.,1.,1.);
"whitesmoke",(0.960784313725,0.960784313725,0.960784313725);
"yellow",(1.,1.,0.);
"yellowgreen",(0.603921568627,0.803921568627,0.196078431373)

