0++0 Tabments -Queries, Calculations, Statistics and Visualization

Klaus Benecke (24.10.2023) Copyright © 2022 Klaus Benecke. All rights reserved.

Foreword

What does it mean that o++o (ottoPS) is probably the simplest programming language?

It does not mean that o++o consists of very simple concepts. It does mean, however, that its application is relatively simple. o++o is not simple, but solving problems is easier than with other programming languages of equal expressiveness. o++o behaves like a natural language. English or German is not easy to learn either. However, natural language can be used - to a certain extent - even by children under the age of four.

We are convinced that the basic idea behind our best operation (stroke list operation) is easier to understand than the multiplication algorithm of decimal numbers. In our opinion, the concepts of o++o are relatively difficult to formalize, but they can often be described by simple algorithms that almost every user (= OttoNormalVerbraucher) can use in the future.

Is o++o a programming language?

o++oPS is designed as an end-user language, but not for programming complex database systems or compilers. It was developed to support people in solving their mathematical everyday requirements. Daily challenges are first of all (ad hoc) queries to tables (databases), documents or collections of tables and documents. It also includes financial calculations or in other daily context: determination of function values, determination of zeros or extrema of functions and solving a system of equations (calculation with matrices). In addition, o++o should be able to generate and manipulate images and visualize tables and documents in the form of diagrams. The most important innovative ideas of o++o compared to other approaches are connected with repeating groups. This means that a given object may contain not only null or one value for an attribute, but also multiple values. For such structures, known for more than 50 years in computer science, o++o provides new, powerful and easy to use operations.

This book contains a variety of sample queries to illustrate the basic concepts.

1 Table of content

1 Calc	culations and spreadsheet applications with o++o	
2	A savings bank account	
3	Table Recursion - Exponential Growth	30
4	Hello otto - gimmick	39
5	o++o for kindergarten?	
5.1	Stroke Lists	
5.2	The conversion operations zahl and 1	
5.3	The operations + *	
5.4	o++o programs to kindergarten?	
6	o++o in School Lessons	46
7	Multiplication, School and Digitization	52
7.1	Who can multiply in their head?	52
7.2	Who can multiply in writing?	53
7.3	Who can program the multiplication?	53
7.4	Stroke list multiplication versus decimal multiplication	59
7.5	How could enrich o++o the school curriculum?	59
7.6	Can the stroke list operation be taught as early as third grade?	61
7.7	Does the school calculator from Texas-Instruments calculate wrong?	62
7.8	Is EXCEL morally worn out?	69
7.9	o++o Proofs	
7.10	An example of deep digitization	71
8	Schemes and Structured Tables	73
9	Tabment types (TTs) and structured documents	77
10	A university database	86
10.1	Selection (avec sans)	
10.2	Calculations (:=)	
10.3	Restructuring (gib)	
10.4	A simple join and nested queries	
10.5	A user-friendly join (igib)	
11	Queries to Wikipedia (keys)	
12	Special restructuring operations (onrs verti hori)	
13	Some operations for text processing with o++o (+ -+ cil zil satzl)	120
14	Format with o++o ('3 '4 norm3e norm3m mant rnd)	
15	Structured diagrams	
16	Multiple diagrams	
17	Image generation	

18	Image editing	143
19	A baker application (CSS)	151
20	Appendix A: List of operations and keywords of o++o	159
21	Appendix B: Grammar	180
22	Appendix C: List of o++o color names	194

List of programs and queries

"Code" a text	.120
-+text	.120
a problem with hierarchical paths	76
a simple bill	93
a wave over a photo	.150
Addition	
Addition of rational numbers	
an o++o-program, for which EXCEL needs	
more than 6 worksheets	69
ароЗ аро4	
approximate zeros	
area of circle	
area under a curve	
area under a non-continuous function	
area without integral calculus	
assignment and gib	
assignment with redundancy	
avec loop photo	
avec 2 times	
avec after gib	
avec jpg	
avec twice	
average (weighted)	
Average of several marks	
bild	
BMI	
calculations in bills	
chart	
chess board problem	
circumference and area of circles	
circumference and area of rectangles	
circumference of several circles	
colors in bild	
column chart with signatures	
combine fields who are not on a hierarchic	al
path	
Comma is an ordinary operation	
computations and formatting CSS	.151
computations with assignment	92
computations without assignment	92
compute pi by zeros	
concatenate 2 words	39
concatenation of words and text	.120
Contrast total revenues and expenditures.	26
count animal species with strokes	
count at serveral levels	
count at several target levels	75
count cars	
count characters	

count characters and words	82
count componentwise	67
count different kinds of animals	44
count in documents	82
count in wiki	. 110
Count of binary numbers	14
count pixels	
count struples	73
counting in structured tables	61
create a black-cyan photo	. 148
diagram by click	16
diagram with signatures	16
Difference or List	14
distribute 15 apples among 4 children	44
distribution with if	. 102
Division	14
Division with improved readability	14
Division with rounding	14
divisions	44
divrest generates a pair of numbers	
divrest value table	20
document representations	80
double a photo	. 149
each of 4 children gets 3 apples	
Edge of a cube	
extreme coordinates of pixels	. 144
falls	94
falls modify colors	
Fibonacci-numbers	
first and last transaction	
Flasche mit Korken	23
float multiplication in OCaml	
four plus four	
four times 3	51
functions by column charts	
functions with bild	
GDP 1988 to 2014	
GDP 1992 to 2014	35
generate 2 times 10 points	
generate a bikini	
generate the German flag	
grouping withaggregation	
hori	
how many turnovers?	
how much got Ms. Heyer per year and mo	
how much money was transferred from th	
account?	26

how much money was transferred to the	
account?	26
how much Ms. heyer got	26
how old is Claudia?	45
igib107,	108
igib and natsel	
illustration of collection symbols	95
in 121	
income and expenses	27
income and expenses monthwise	
in-relation	
interests of 1 % and 9 %	
interests of 1 % und 9 % within 200 years .	32
interger multiplication in OCaml	
interger zeros of a polynomial	
intersection by gib	
Introduction of two column names	
keys	
keys	
keys avec	
keys keys	
keys like	
line chart	
list of 2 words	
list of stroke lists	
list times number	
local maximum	
local minimum of a polynomial	
mant	
matrix multiplication in o++o	
matrix-multiplication with o++o function	
Maximum of numbers	
Mengendifferenz	
minimum (local)	
multiple charts	
multiplying a table with a number	
my multiplication of natural numbers	
Namen des in Sachsen Geborenen	
nested join with depth three	
nightlife in wiki	
non-hierarchical path with gib	
norm3m norm3e	
number to stroke list	
o++o program on the blackboard	
o++o proof (preparation)	
o++o proof for mad	
omit rows and columns	
onrs	
output two words	
pack data	
paint a photo	
paint a photo to German flag	
Pair of 2 independent terms	
	10

pair of words	39
Pascal triangle	48
photo	143
photo falls	147
plus percent	
prime numbers up to 70	20
product of 5 numbers	60
Product of nubers from 1 to 100	15
restructuring with aggregation	102
reverse a hierarchy	98
sans and avec	91
select and sort	75
select certain numbers	68
select in documents	83
select pixels	144
selection and assignment	93
selection assignment and gib	93
selection by ?	
selection by content and position	91
selection by position	
selection by word in 2 files	
selection by words	
selection in numbers	-
selection in top level	89
selection with aggregation	
selection with gib	
selection with set	
selection with two gib clauses	
selections by content	
selections on top level	
selections on two levels	
set difference by selection	
set difference with nested query	
set of two words	
sine function and its derivation	
Sine of 30 degrees	14
Sine of pi : 2	
six years old children wanted	
sort a chart	
sort a two levels	
sort by 2 fields in one level	95
sort downwards	
Sortiere die Fakultäten nach Budget und	
zusätzlich nach Studentenkapazität	
stroke list multiplication in o++o	
stroke list multiplication shorter	
Stroke list to number	
structured bar chart	
structured chart	
structured chart for elections	
structured chart of BMI	
structured diagram	

structured diagram with user defined colors

	.134, 135
structured join with nested query	
structured left outer join	104
subtraction	43
sum columnwise	68
Sum of 4 numbers	15
sum of first 100 numbers	60
sum of many numbers	67
Sum of numbers of 1 to 100	15
table for function graph	19
table of content of wiki	110
table of values	18
table plus percent number	92
tag with gib	98
ten times ten	
text	39
three plus four	51

to the power of 14
total price of a bill22
total price of a simple bill 21
two nested joins 105
two selections at top level
two words one column 39
two words to meta and primary data 40
two words two columns 39
Type of first input value remains 14
Type of the first input value is maintaind 14
ultimo91
union by gib 100
verti
verti hori 119
weighted averages 49
woman weighs 40 kg plus half her weight 23
young children wanted 45
zero of sine function 46

Introduction

The first computer language has already been developed during the Second World War by Konrad Zuse. Very early languages like Fortran and Lisp have been used for more than 60 years. BASIC was the first attempt to develop a computer language simple enough to be used by everyone. One of the original goals of SQL was to develop an end-user language. There are now well over 100 computer languages. Python - the easy-to-use programming language - and the other general-purpose languages are designed for programmers. We follow the conviction; it is advantageous if every person can understand and write computer programs.

Let us direct our view to Germany: It is to be noted that up to now there is no generally recognized computer language which is taught or can be taught in schools for all. Spreadsheets even appear in math books of all students, but EXCEL is not a computer language. With o++o, any student can write certain 5-line programs where EXCEL requires 7 worksheets.

Therefore, to this day, there seems to be no universally accepted computer language worth teaching to everyone, or at least user-friendly and powerful enough for its usefulness to be sufficiently visible even in school education. The only widely used "languages" are associated with the use of search engines. Here the user only has to write one, two or three words (a very simple program) and the system finds thousands, millions or even more results. However, in this context, the user is not able to write "programs" with more selectivity. He has to hope that Baidu, Google and Co. will find exactly the pages that meet his requirements. Extracts of these pages are written at the beginning of an almost infinite result set. What does the user do if he is more interested in a document with the rank number 100, 1'000 or 100'000? What can a user do, if he has an exact idea of 1'000 desired documents he is interested in, but he wants only some small sub-documents or sub-tables of each of them? These questions are not easy to answer and realize. The language o++o (otto) aims to solve parts of such problems. We summarize the main design principles and requirements for an end-user computer language or data model with corresponding operations:

- 1. It should be based on easily applicable concepts with a simple syntax.
- 2. It should be expressive and powerful.
- 3. It should be expandable with new operations.
- 4. It should have precise semantics based on algorithms.
- 5. It should allow queries on tables (databases) and documents.
- 6. It should allow queries over document collections (IR systems) and entire databases.
- 7. It should allow computations by naive (brute force) algorithms.
- 8. It should also be usable for people with little interest in mathematics and computer science (programming by gut feeling).
- It is intended to provide simple as well as more sophisticated concepts for broad classes of applications, suitable even for users with a keen interest in mathematics and computer science.
- 10. It should solidly integrate single data and bulk data operations.
- 11. The result of a mass data operation should be as small as possible (e.g., no Cartesian product if possible; highly selective conditions must be present).
- 12. It would be nice if it could use graphical features based on structured tables.
- 13. It should be efficiently implementable.
- 14. At least parts of the language should be able to be optimized.

o++o was designed and developed with these principles in mind. It started as a database language for tables with repeating groups. A record with repeating groups may contain not only one value at each position, but also several (sub tuples of) values. For example, a student record may contain a name and a scholarship, but it may also contain multiple hobbies or multiple (SUBJECT,MARK) pairs.

Similarly, a machine part may contain a number and the name of a color, and to that several subparts or several layers or edges. Such sub-tuples may have sub-tuples again. These repeating groups have existed in computer science for more than 60 years. They are typical for hierarchical systems (IMS,...), but were later discredited by emerging relational systems. Even today they are widely used in XML, JSON and NoSQL systems. However, in our opinion, there is no widely accepted computer language capable of adequately handling these richer structures. With the advent of XML, we have been able to generalize our operations to the new capabilities of arbitrary tagging and the alternate operator (|). Therefore, we are able to manipulate not only tables, but also documents. We have introduced the name tabment. A tabment can be understood as an abstract (syntax-independent) specification of an XML document. Step by step we improved our language o++o. We introduced binary search trees in tabments. Thus, we have achieved great efficiency gains for several operations.

Indices can also be considered as tabments.

Our language o++o is implemented in OCaml. Some basic keywords of o++o are German or French ('gib' instead of SELECT, 'avec' instead of WHERE,...) because they are shorter than the corresponding English words, but most keywords are English. This seems to be important because smartphones have only a small screen.

When we consider certain queries, our o++o data model relates to the relational model perhaps like decimal numbers relate to the Roman system. Roman numerals are more understandable, especially for small numbers, but calculations are usually more difficult.

The most common argument against an end-user language is: Is the customer paying for a product for which he still has to learn something?

We think back 100 years:

The car was invented, but most people took the railroad or a horse-drawn carriage if they were rich enough. It was believed that there would never be more than 1 million cars in the world because there would be no more than 1 million drivers. No one believed that the average person would one day get a driver's license and drive a car himself.

Today, many people also believe that no one would buy a computer program that might take a few hours or days to learn.

We put forward the following arguments against it:

- 0. Almost all people in the world had to learn for several years to understand the single data operations addition, multiplication, division and difference for each number range in school. Are bulk data operations like selections, calculations, restructuring, sorting tables, ... not just as important?
- 1. Even if you want to use a word processor like MS Word, you pay for it and need weeks and months until you master all the possibilities.
- 2. A good programming language is much easier to learn than German or a foreign language. Knowledge of a computer language could become part of general education in the future.
- 3. A good programming language allows many problems to be formulated more briefly and precisely with fewer misunderstandings than any natural language.
- 4. There is no need to explain the advantages of someone who has a driver's license or even a car. If he can even program solutions to problems with the computer himself, this increases the quality of computer use, because he can also interpret the results better. He does not need a computer scientist (chauffeur). Thus, there are fewer communication problems and he saves the cost of the computer scientist and the time for communication.
- 5. If the individual can make precise queries, he has much more compact query results and saves a lot of manual search effort. This also reduces the workload and improves quality.

What are the more specific design principles of o++o?

1. important things first

- 1.1 Sorting by the first attributes of a collection
 - gib DEPARTMENT, CHIEF, (NAME, LOCATION m) m

Here is described a structured table, which contains for each department also a corresponding group of employees. Sets (m) (and multi sets) are always sorted by the first column names. I.e. the outer set is sorted by DEPARTMENT and the inner set by NAME and then by LOCATION, because the NAME is not always a key in a department.

1.2 First written - first calculated:

2+3*4 gives 20

Here, a rectangle has one longer side, which consists of two sections 2 and 3 meters long. The other side is 4 meters long. The area gives 20.

3*4+2 gives 14

If I have two rectangles, one with side lengths 3 and 4 and one with area 2, I can first calculate 3*4 and then add 2 to get the area.

1.3 TT-Invariance (TT=TabmentType)

For many operations such as addition or multiplication, the type of the result is the same as the type of the first input value.

<tabh!< th=""><th></th><th></th><th></th><th></th><th></th></tabh!<>					
SUBJECT,	MA	۱R	<1	m	
Math	1	2	4	1	
Phy	2	3	5	2	4
!TABH>					
*15/6					

Here a whole table in horizontal tab format is multiplied by a number. That is, each number of the table is multiplied by 15/6 and the words remain unchanged. This results again is a table of the type SUBJECT,MARKI m. The renaming of MARK to POINTS can be done by the user. I.e. also here the first input value is more important than the second.

1.4 Exponent representation of numbers

o++o additionally allows a representation where the more important part - the exponent - precedes the mantissa of a number. The exponent says more about the size of the number than the mantissa:

6m12.345'678 (12 million 345 thousand ...)

9m123.456 (123 billion 456 million ...)

2. pragmatics and methodology first

We can also allow multi-line semantics for a single term. Then we could

(23+45+67) * (1111+2222+3333+4444)

through

23+45+67

*

1111+2222+3333+4444

replace. This can be typed faster and is also clearer by dedicating a line to each pair of parentheses. In o++o this notation is further shortened to

23+45+67 * 1111+2222+3333+4444 This is not done for methodological reasons (better readability), but for pragmatism. This notation does not waste the additional middle line. Compared to the first notation, you have to use a (larger) return key only once instead of 4 brackets.

3. short catchy keywords

Short programs require short keywords and short operation symbols or names. However, if the number of these symbols becomes too large, one must also allow full names for designations so that the user can remember them. For o++o, the more important a symbol is, i.e. the more frequently it is used, the shorter it is. This rule can be better implemented by allowing non-English words as well.

Very short are + , * ,... m, I This is certainly all right. We have also replaced many English terms with more memorable and shorter symbols:

```
sum: ++
product: **
average: ++:
count: ++1
```

•••

Out of gratitude to the Ocaml developers, we have introduced 2 French words for selection: avec (with), sans (without)

Where we have found very short memorable known words in a language other than English, we substitute English terms with shorter ones from other languages if those words are known to many people:

true: si (Spanish Italian) false: no From the translation of SELECT-FROM-WHERE (gib-aus-mit) are the German words gib (select) for "give me" and aus (from) have become.

4. programs are processed from top to bottom and from left to right.

Programs with loops or general recursion are expressive and powerful, but often difficult to read and understand. Sequential programs are expected to be not so expressive. o++o was also developed to prove the opposite. This requires powerful and expressive operations.

Example: Is 37 not a prime number?

First, all products up to 100 are calculated:

```
Xl:=2 ..50  # 49 Generate numbers
Yl:=2 ..10 at X  # generate 9 numbers for each X value
PRODUCT:=X*Y  # calculate all products
avec PRODUCT <= 100  # select the desired products
gib PRODUCTm  # Sort products and eliminate duplicates
ANSWER:= 37 in PRODUCTm # Is 37 a product?
```

is the comment character.

Readability of programs and tabments is an important problem.

o++o takes this into account as follows:

- 1. programs can often be written short.
 - With the above program for the determination of all products some concepts of o++o can be explained well. If one only wants to know whether 37 is a prime number, this can be formulated much shorter: DIVIDER1:= 2 ... 19 gib ANSWER ANSWER:=37 rest DIVIDER = 0 ! ||

The program is certainly easy to read, if you have internalized that || is the existential aggregation and you can use it in the same way as the ++ aggregation.

- 2. Numbers can also be displayed in Swiss style (e.g.: 12'345'678)
- 3. lines indented by more than 4 spaces logically belong to the previous line. E.G.: my_marks.tab gib AVG,(SUBJECT,AVG m) AVG:=MARK! ++: # this line belongs from the logical
 - # point of view still to the previous

```
rnd 1
```

 a structured table with the scheme DEPARTMENT, CHIEF, (NAME, SALARY 1) m contains each department and boss only once. This not only reduces redundancy, but also improves readability compared to flat tables of this type.

In the chapters it is shown how general and simple the query possibilities of o++o are. Chapter 1 introduces some basic functions of our "pocket calculator". All examples there do not require any stored tables or documents. This does not mean that our o++o app cannot work with files. Tables and documents can also be stored on the smartphone.

First of all, the user must understand what a schema is and what are the tables or documents that belong to this schema. Then it will not be too difficult to grasp the query examples for selection, calculation and restructuring of the first chapters. All operations allow a compact and readable formulation of (complex) queries. They apply to nested lists or sets, and they are new to the database world. Calculations can often be understood as hierarchical "map" functions. Restructuring with the gib clause is very expressive, as it is combined with sort (m, b), duplicate elimination (m), aggregation (++, min, max, ++1, ++:, ||, &&, **,variance).

We know of no other restructuring operation in a commercial product that allows to transform a given hierarchy only by specifying a schema or TT (Tabment Type) of the desired structure. Although the operations in the examples are only applied sequentially, they cover a wide range of applications.

Section 10.4 introduces a "natural" join operation and its un-nested and nested uses. It becomes clear that we do not need the Cartesian product and even the ordinary flat relational join. A simplified notion of recursion is introduced in Chapter 3. With this end-user recursion, appropriate queries can be realized with minimal learning effort. After showing in Chapter 4 that printing two words is not just a syntactic issue, Chapter 6 tries to make clear that o++o is useful for all subjects in school, but especially for mathematics and computer science. It will be made clear that even 9th or 10th grade students can solve problems that are applications of differential and integral calculus. In addition, it is argued that the ordinary division algorithm could be eliminated from the mathematics curriculum. The first "end-user join" (igib) (Section 10.5) roughly speaking extends the restructuring operation to multiple input tables. It requires neither Cartesian product nor (hidden) join conditions. Then, queries to Wikipedia are introduced in chapter 11. Not only table-oriented queries with reference to infoboxes are considered, but also document-oriented ones.

Chapter 17 contains some queries where the result can be interpreted as an image. Roughly speaking, each result table contains the coordinates of points possibly combined with a color value. It is also shown that it is easier to create structured diagrams based on structured tables.

The most important operations of the data model are described in more detail in chapter 10. Section 10.3 contains the description of the restructuring operation, 10.2 the assignment operation and 10.1 the selection.

Acknowledgements:

I would like to thank the following computer scientists for their valuable contributions to our system o++o and previous systems:

Wolfgang Reichstein for the first one-step implementation of the restructuring operation in C for HSQ files,

Dmitri Shamshurko for the first implementation of the first core of the "gib-out-with" construct in a functional style (Caml Light),

Martin Schnabel for the conception and implementation of subroutines and other features,

Andreas Hauptmann for improving many concepts in design and efficiency, especially for query optimization concepts.

Further thanks go to Stephan Schenkl and Mirko Otto for supporting the o++o project.

Thanks to Eicke Redweik for implementing access to a relational DBMS and to Wikipedia and to Jens Winter for implementing a first o++o app for Android.

1 Calculations and spreadsheet applications with o++o

We first present some numerical calculations.

Program 1.1: Addition	Result
1.23 + 4.56	5.79

Program 1.2: Division	Result
1:7	0.142857142857

Program 1.3 : Division with improved readability	Result
1:7 '3	0.142'857'142'857

Program 1.4: Division with rounding	Result
1:7 rnd 3	0.143

Program 1.5: Exponentiation	Result
3 ^ 20 '3 # or hoch	3'486'784'401

is the comment character. I.e. that "or hoch" does not belong to the program. Comments can be used to explain programs.

Program 1.6: Addition of rational numbers	Result
3/4 + 1/3	13/12

Program 1.7 : Type of the first input value is	Result
maintained	
3/4 + 0.3	21/20

Program 1.8: Type of the first input value is	Result
maintained	
0.3+3/4	1.05

Program 1.9: Difference or list	Result
3 - 2 # Note that "3 -2" is a	1
<pre># List of two numbers</pre>	

Program 1.10: Sine of pi : 2	Result
pi : 2 sin	1.

Program 1.11: Sine of 30 degrees	Result
30:180*pi sin	0.5

Program 1.12: How many 10-digit binary	Result
numbers are there?	

2 ^ 10 # base:2 exponent: 10	1024
--------------------------------	------

Program 1.13: Calculate the edge length of a	Result
cube with volume 2	
2 ^ 1/3	1.25992104989
or	

Program 1.14 : Calculate the edge length of a cube with volume 2 using ordinary division	Result
operation	
2 ^(1:3)	1.25992104989

Program 1.15: Sum of 4 numbers	Result
3.21 4.56 6.88 9.32 ++	23.97

Program 1.16: Sum of numbers from 1 to 100	Result
1 100 ++	5050

Program 1.17: Product of the	Result
numbers from 10 to 40	
10 40 **	2248443792019118536005322061276774400000000

You can see from the result that you can process arbitrarily large integers with o++o.

Program 1.18: Maximum of numbers	Result
1/3 2/7 max	1/3

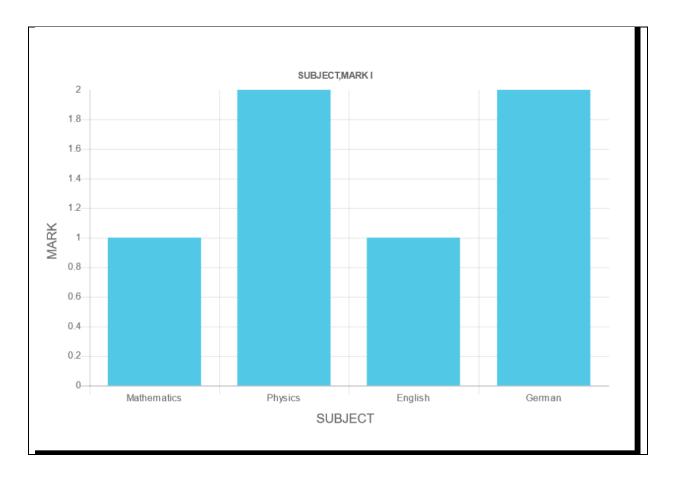
Program 1.19: Average of several marks	Result
1 3 2 1 3 4 ++:	2.3333333333

Program 1.20: Introduction of two column names	Result
(Output values of two terms simultaneously)	
X:=2 ^ 10 # := : Assignment	Х, Ү
Y:=X : 10	1024 102.4

Program 1.21: a pair of two independent terms	Result
2 sqrt; 3 sqrt # ; separates	PZAHL, PZAHL
<pre># stronger than ,</pre>	1.41421356237 1.73205080757

There are few commas in primary data of tables. This would destroy the readability. Therefore, we do not find commas in .tab files, for example, even if pairs or tuples are represented. However, pairing is represented in the metadata (table headers) of the tables to prevent misunderstandings. PZAHL is a number with a point.

Program 1.22: Comma is an ordinary operation:	Result
Calculation from left to right	
2 sqrt,3 sqrt # the last sqrt	PZAHL, PZAHL
# acts both via	1.189207115 1.73205080757
# "2 sqrt" as well	
# as over 3	


Program 1.23: divrest generates a pair of	Result
numbers	
13 divrest 5	ZAHL,ZAHL
	2 3

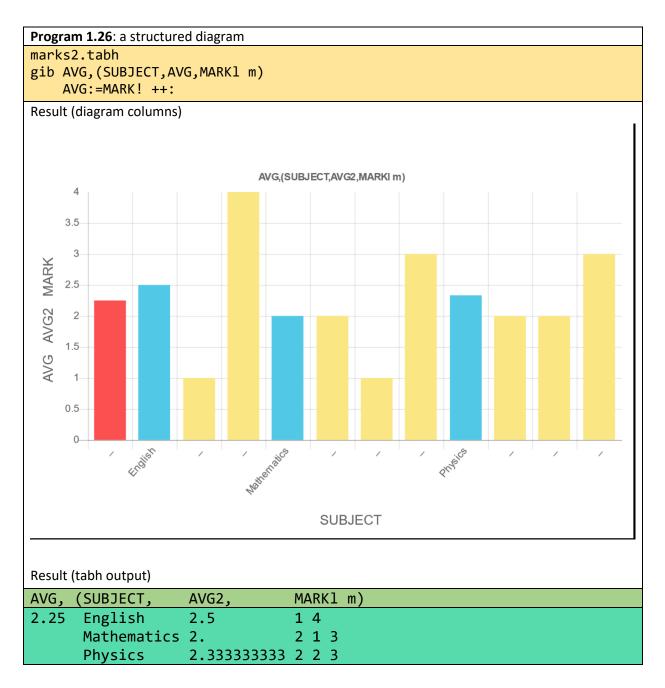
Program 1.24: create	a simple diag	gram with on	e click	
1 3 2 5 1 # List	of number	rs		
Result: Diagram (colur	mns)			
5		ZAHLI		
4.5				
4				
3.5				
3				
2.5				
2				
1.5				
1				
0.5				
0				_

SUBJECT,	MARK	1
Mathematics	1	
Physics	2	
English	1	
German	2	
notes1.tab		

The above table represents a list of (SUBJECT,MARK) pairs. It can be created with any text editor or typed into the output field of the o++o interface. I stands for list.

Program 1.25: a simple bar chart with signatures
notes1.tab
Result (diagram - Säulen)

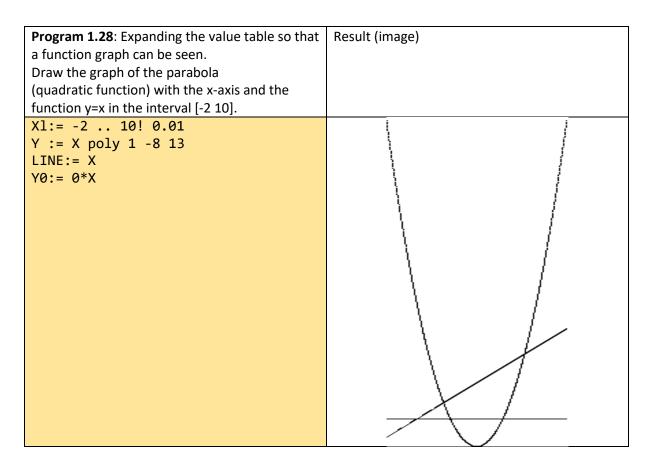
It is also possible to enter the following line into the program field of the Otto interface.


SUBJECT, MARK 1:= Mathematics Physics English German, 1 2 1 2

By the operation ,, the both given lists are elementwise connected by comma. The resulting list consists of 4 (WORT,ZAHL) pairs, where the first column is renamed to SUBJECT and the second to MARK.

The basic data of the following query can be generated by the following small structured table. Here I stands for list. It needs the ending tabh, because the marks are arranged horizontally. Lists were invented in Venice (Lista). The single entries (=elements = rows) of the list were arranged one below the other. The subjects are also arranged vertically in noten2.tabh. Simple lists were already arranged horizontally thousands of years ago. A sentence is a list of words, which were essentially arranged horizontally. Since this saves a lot of screen space and paper, simple (single-column) lists in o++o can also be arranged horizontally. This is possible because the list is understood abstractly. This allows o++o to understand JSON lists, for example, even though the list elements are not simply separated by spaces. In questions of the representation of the elements, sets and multisets are equal to lists. However, different parentheses are used.

SUBJECT,	MARK1 m
Mathematics	213
Physics	223
English	14
marks2.tabh	


This table can also be generated by the following program line with set brackets { }: SUBJECT,MARK1 m:={Mathematics,[2 1 3] Physics,[2 2 3] English,[1 4]}

The following are examples of a curve discussion using a parabola as an example.

Program 1.27 : Calculation of a small table of values of the quadratic function with coefficients 1 -8 13 (x ² - 8 x +13)	Result (tab)
X1:= -2 10	X, Y 1
Y := X poly [1 -8 13]	-2 33
	-1 22
	0 13
	16
	2 1
	3 -2
	4 - 3
	5 -2
	6 1
	76

8 13
9 22
10 33

Program 1.29: Approximate determination of the	Result
(local) minimum of the parabola	
-2 10!0.0001 poly [1 -8 13] min	-3

Program 1.30: Approximate determination of the	Result (tab)
two zeros	
Xl:= -2 10!0.0001	X, Y1
Y := X poly [1 -8 13]	2.2679000 0.0001704
avec Y succ * Y <= 0 # succ: successor	5.7320000 -0.0001760
rnd 7	

Program 1.31 : Determining the area under a (composite) function	Result (image) (without 2 last program lines)
Xl:= -2 10! 0.0001 Y := (X poly [1 -8 13],0) min	Result (tab)

RECTANGLE:= Y*0.0001	-6.92820323316
++ RECTANGLE	

If we omit the last two program lines in the following program, the function can be visualized by clicking on bild:

Program 1.32 : Determination of the area under a non-continuous function	Result (image)
<pre>Xl:= -2 10! 0.0001 Y := X poly (1 -8 13),(X rnd 0) min RECTANGLE:=Y*0.0001 ++ RECTANGLE</pre>	Result (tab) 21.970089131

Program 1.33 : Using the divrest function to output number pairs	Result (tab)
Xl:=110	X, DIV,REST 1
DIV,REST:=X divrest 3	101
	202
	310
	4 1 1
	512
	620
	721
	822
	930
	10 3 1

Program 1.34: Determination of all prime numbers up to 70
X1:= 2 35
Y1:= 2 9 at X
PRODUCT:= X*Y
avec PRODUCT <= 70 # avec: with
gib PRODUCTm
PRIM1:= 270
sans PRIM in PRODUCTm # sans: without
gib PRIM1
Result (tabh output):

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

Program 1.35: Calculate the circumference of several circles, whose radii are given. The results are to be rounded to 2 digits after the point.

4 5 6 2 3.7 9.77 *pi*2 rnd 2

Result (tabh)

25.13 31.42 37.7 12.57 23.25 61.39

You can see that this program can be written in one line.

Program 1.36: Calculating circumference and area	Result (tab)		
of several circles, whose radii are given			
Rl:= 4 5 6 2 3.7 9.77	R, CIRCUM, AREA 1		
CIRCUM :=R*pi*2	4. 25.1 50.3		
AREA:=R*R*pi	5. 31.4 78.5		
rnd 1	6. 37.7 113.1		
	2. 12.6 12.6		
	3.7 23.2 43.0		
	9.8 61.4 299.9		

By RI:= the name R (called "tag") is assigned to each element of the given list.

An assignment (":=") adds a new column to the specified table. In the above program, the columns CIRCUM and AREA are added one after the other, resulting in a table of type R,CIRCUM,AREA I. I stands for list. Unfortunately, this can easily be confused with the one.

Program 1.37 : Calculating perimeter and area of multiple rectangles	Result	t (tab)		
<tab!< td=""><td>Α,</td><td>Β,</td><td>CIRCUM,</td><td>AREA 1</td></tab!<>	Α,	Β,	CIRCUM,	AREA 1
A, Bl	1.23	5.67	13.8	6.9741
1.23 5.67			23.94	33.048
7.65 4.32			32.82	64,5498
9.87 6.54	5.07	0.51	52.02	0110100
!TAB>				
CIRCUM:=A+B*2				
AREA:=A*B				

The TAB brackets ("<TAB!", "!TAB>") are needed only in the program part of the system. In a file the system recognizes the type by the ending ".tab". In the TAB representation the values must be aligned to the left side of the associated column names.

Program 1.38: Total price of a simple invoice	Result
<tab!< th=""><th>3.24</th></tab!<>	3.24
ARTICLE, PRICE 1	
Beer 0.61	
Lemonade 0.23	
Steak 2.40	
!TAB>	
++	

Here we simply sum over the numbers in the given table (a list of pairs). The ARTICLE values are words and therefore have no effect on the result. Now we replace ++ with +% 10. This creates a table with 2 columns and three rows (records, tuples). Each number now still contains 10% tip:

Dreamon 1 20, Multiplying a table by a pyphan	Deput
Program 1.39 : Multiplying a table by a number	Result

<tab!< th=""><th>ARTICLE, PRICE 1</th></tab!<>	ARTICLE, PRICE 1
ARTICLE, PRICE 1	Beer 0.671
Beer 0.61	Lemonade 0.253
Lemonade 0.23	Steak 2.64
Steak 2.40	
!TAB>	
+% 10	

Then you can add again with ++ to get the total (3.564).

Program 1.40 : Find the total price of a more complicated calculation using a simple table	Result
<tab!< th=""><th>14.56</th></tab!<>	14.56
ARTICLE, PRICE, CNT 1	
Beer 0.61 7	
Lemonade 0.23 3	
Steak 2.40 4	
!TAB>	
POSPRICE:= PRICE*CNT	
++ POSPRICE	

As a result of the assignment, the specified table is extended by a new column with the column name POSPRICE, where each of the three PRICE values is multiplied by the associated CNT value. To determine the total price, a second input value must be passed to the ++ operation. Otherwise, the sum of all nine numbers in the table above would be formed. Both lines of the program can also be replaced by:

++ PRICE * CNT

The first input value of an operation, which is at the beginning of a program line, is always the result of the previous program line.

The ":=" character of the assignment is to be distinguished from the equal sign =. For the formulation of conditions the equal sign, as well as <, >, <=, "in" etc. is needed. Conditions are used for selection (filtering of (complex) rows of structured tables).

```
For example, add a condition

avec ARTICLE = beer

or only

avec beer

then the final result is the total price for the seven beers. If you want to calculate only the price for

the other items instead, use

sans ARTICLE = beer

or simply

sans beer.
```

Column names (metadata) must always be written in upper case. The keywords (gib, sans, avec, ...) must always be written in lower case. If you write a word of the primary data always with upper and lower case letters, the program becomes easier to read.

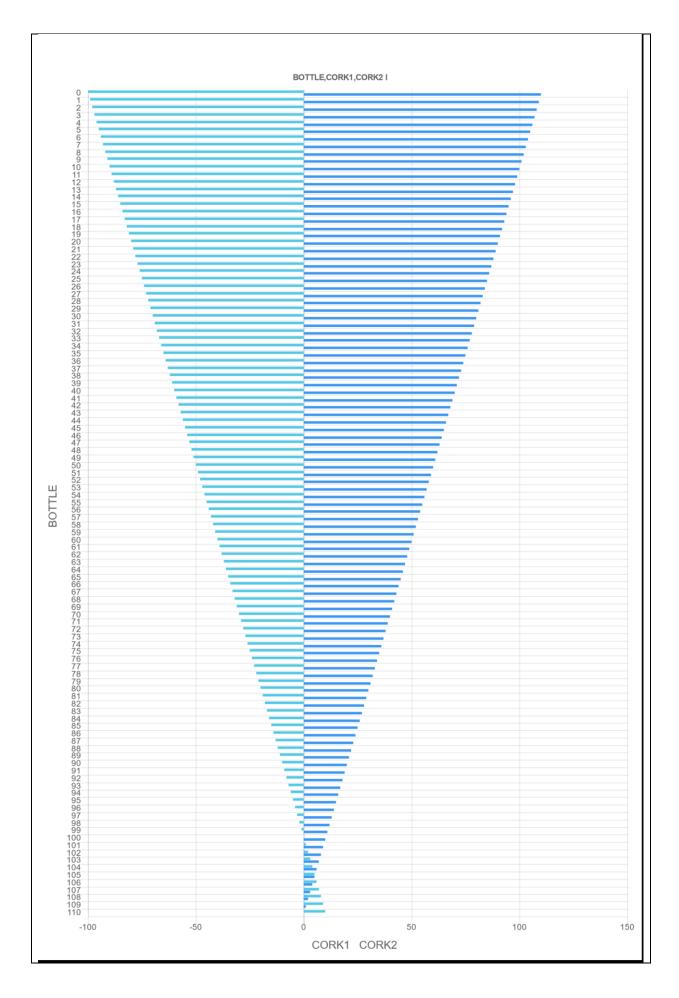
The reference to the aggregation (here ++) results from the header line of the desired table. TOTAL is an aggregation per NAME. Sets (m, m-) are always sorted by the column names specified first.

Program 1.41: Find a weighted average for 3	Result (tabh)
students and the overall average	
<tabh!< td=""><td>TOTAL,(NAME, TOT, EXAM1,MARK1 1)</td></tabh!<>	TOTAL,(NAME, TOT, EXAM1,MARK1 1)

NAME, EXAM1,MARK1 1	1.66 Ernst 1.59 1 2 1 2 3 1 3 1	1
Ernst 1 2 1 2 3 1 3 1 1	Clara 1.8 1 1 3	
Clara 1 1 3	Sophia 1.6 1 3 1	
Sophia 1 3 1		
!TABH>		
TOT:=EXAM1 ++: *0.6 +(MARK1 ++: *0	4)	
TOTAL:=TOT1 ++:		
rnd 2		

Program 1.42: A woman weighs 40 kg plus half her	Result
weight. How much does she weigh?	
WEIGHT1:= 40 100	80
avec WEIGHT:2+40=WEIGHT	

Program 1.43 : A bottle with a cork costs one euro and ten cents. The bottle is one euro more expensive than the cork. How much does the bottle cost?	Result
BOTTLE1 := 0 110	BOTTLE
avec 110-BOTTLE=BOTTLE- 100 # = CORK	105


Program 1.44 : A bottle with a cork costs one euro and ten cents. The bottle is one euro more expensive than the cork. How much does the cork cost?	Result
BOTTLE1:= 0 110	BOTTLE, CORK 1
CORK:= BOTTLE - 100	105 5
avec CORK+BOTTLE = 110	

The first assignment gives each of the numbers from 0 to 110 the tag BOTTLE. This is best seen by looking at the ment representation:	If we had written the assignment BOTTLE:= 0110, the BOTTLE tag would appear only once:
<tabm></tabm>	<bottle></bottle>
<bottle>0</bottle>	0
<bottle>1</bottle>	1
<bottle>2</bottle>	2
<bottle>3</bottle>	3
•••	
<bottle>108</bottle>	108
<bottle>109</bottle>	109
<bottle>110</bottle>	110

Program 1.45 : A bottle with a cork costs one euro and ten cents. The bottle is one euro more expensive than the cork. How much does the bottle cost?	Result
BOTTLE:= 0110	BOTTLE, CORK1, CORK2 1
CORK1 := BOTTLE - 100	105 5 5
CORK2 := 110 - BOTTLE	
avec CORK1=CORK2	

This solution is advantageous from a methodical point of view, because the first 3 program lines can be displayed by clicking on the image button. You can see that there are 2 straight lines whose intersection is determined by the conditions. You can also click diagram/Balken to get the following result, where it is visible that both bars are equal at 105. Here we had to add the program line:

BOTTLE::=BOTTLE wort

2 A savings bank account

The following requests refer to data records of the savings bank. Here the customer can download his data as a csv file. csv files have a very simple structure. Since they contain a lot of quotation marks, they are relatively difficult to read. The otto user does not need to familiarize himself with this syntax. He can view them or parts of the file in the usual way as tab, hsq, ment, web or json files. We consider a file turnover.csv, which contains transactions from 3 years.

Program 2.1: How many turnovers are there?	Result
turnover.csv	162
++1	

Program 2.2: Give the first columns of the first and last transaction!

turnover.csv
avec AMOUNT pos=1 | AMOUNT pos- =1

avec Anobit pos-1 | Anobit pos- -

Result (tab output):ORDERACCOUNT,POSTINGDATE, VALUEDATE, POSTINGTEXT,USAGE....DE59810532720641120.07.2220.07.22ONLINE REFERRALReNr2DE59810532720641113.05.2013.05.20ONLINE REFERRALWage

pos determines the position of a tuple. pos starts counting from the beginning with 1 and pos- from the end. "|" is the logical or sign.

Program 2.3 : How much money was transferred to the account?	Result
<pre>turnover.csv avec AMOUNT > 0 ++ AMOUNT '3</pre>	110'729.17

Program 2.4 : How much money was transferred from the account?	Result
<pre>turnover.csv avec AMOUNT < 0 ++ AMOUNT '3</pre>	-94'713.65

Program 2.5: Contrast total revenues and	Result (tab)
expenditures	
<pre>turnover.csv gib INCOME,EXPENSES</pre>	INCOME , EXPENSES
INCOME:= AMOUNT if AMOUNT > 0!++ EXPENSES:= AMOUNT if AMOUNT< 0!++	110'729.17 -94'713.65
'3	

Program 2.6: How much was transferred to Ms. Heyer in total?	Result
turnover.csv	
avec Heyer	-54'538.28

++ AMOUNT	
'3	

Here the user must know his data. If there are two Heyer's, the above result is certainly not the desired one. One could then add the first name:

avec Heyer Erika

or

avec Heyer & Erika

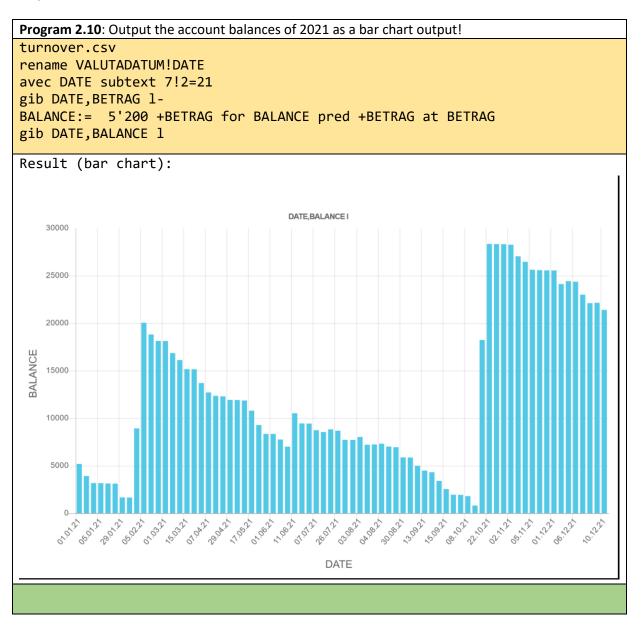
You can also use the account number, but then the program is not so well readable, because most people cannot remember an account number or IBAN.

Program 2.7 : How much was transferred to Ms. Heyer in each year and month?	Result	(tab)		
turnover.csv	YEAR,	SUM, (MONTH,	SUM2 m)m
avec Heyer	20	-16'807.22	5	-1'967.66
D,MONTH, YEAR:=VALUTADATUM zahltrip			6	-1'777.31
gib YEAR, SUM, (MONTH, SUM m) m			7	-1'943.89
SUM:=AMOUNT ! ++			8	-2'110.27
'3			9	-1'833.69
			10	-3'189.39
rnd 2			11	-1'973.48
			12	-2'011.53
	21	-20'727.13	1	-2'011.53
			2	-1'911.90
			3	-2'006.17
			4	-2'443.65
			5	-2'438.02
			6	-583.32
			8	-812.47
			9	-2'636.73
			10	-993.13
			11	-2'635.68
			12	-2'254.53
	22	-17'003.93	1	-1'630.30
			2	-2'202.03
			3	-1'324.38
			4	-1'438.72
			5	-4'460.36
			6	-2'999.59
			7	-2'948.55

Program 2.8: Give a comparison of the income and expenses for each year!
turnover.csv
YEAR:=20 wort + (VALUTADATUM subtext 7!2)
gib YEAR,PLUS,MINU,SUM m
 PLUS:=AMOUNT if AMOUNT>0!++
 MINU:=AMOUNT if AMOUNT<0!++
 SUM:=AMOUNT!++
'3</pre>

Result	tab output):		
YEAR,	PLUS ,	MINU ,	SUM m
2020	24'921.	-23'257.11	1'663.89
2021	50'468.04	-34'274.22	16'193.82
2022	35'340.13	-37'182.32	-1'842.19

subtext needs 3 input values. Here VALUTADATUM is the first, the initial character number 7 the second and the length of the desired string 2 the third. VALUTADATUM is here a word constructed in German date notation, e.g.: 18.06.21. In the above example, however, the year is to be output with 4 digits. For this, the word "20" must be concatenated with the two digits that subtext determines.


```
Program 2.9: Give me for each month of the year 2021 the income and expenses with the larger
transfers!
turnover.csv
avec VALUTADATUM subtext 7!2 = 21
MONTH:=VALUTADATUM nthzahl 2
USE:=VERWENDUNGSZWECK subtext 3!6
RECIPIENT:=BEGUENSTIGTER ZAHLUNGSPFLICHTIGER subtext 3!6
gib MONTH, PLUS, MINU, (AMOUNT, USE, RECIPIENT b-) m
    PLUS:=AMOUNT if AMOUNT>0 ! ++
    MINU:=AMOUNT if AMOUNT<0 ! ++
'3
avec AMOUNT! AMOUNT abs>2'000
rnd 2
Result (hsq output):
MONTH, PLUS, MINU, (BETRAG, USE, RECIPIENT b-) m
MONTH PLUS MINU
 AMOUNT USE RECIPIENT
01 0 -3'536.75
02 18'391.40 -1'922.80
 11'119.40 SZAHLU vestit
 7'272.00 SZAHLU vestit
03 0 -2'969.82
04 0 -3'238.44
05 0 -3'572.81
06 3'513.33 -2'417.52
3'513.33 /2018/ vestit
07 279.37 -2'001.98
08 410.68 -2'258.82
09 0 -3'932.65
10 27'527.11 -1'152.42
 17'413.36 971240 vestit
 10'113.75 971240 vestit
11 0 -2'764.63
12 346.15 -4'505.58
```

If the last line were replaced by

For reasons of presentability, corresponding data of the recipient and the purpose of use have been shortened.

avec AMOUNT abs > 2'000

replace, only the data for months 2, 6 and 10 would remain, since the others do not contain any major transactions (over 2,000 euros).

Here it is assumed that the initial account balance is 5'200. This number is simply added to the first AMOUNT (BETRAG) value in the above example.

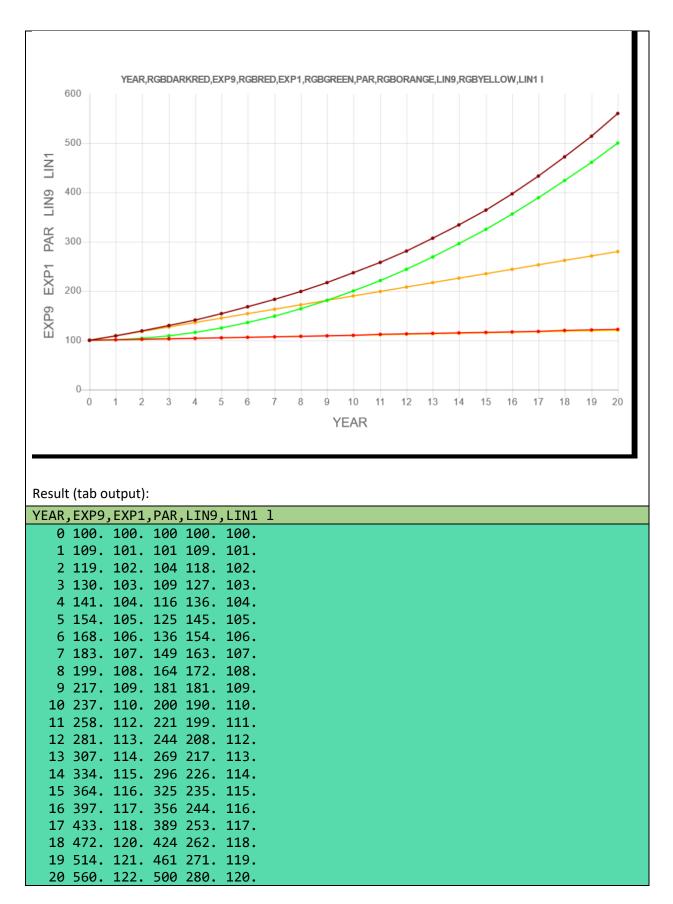
The query possibilities of an account file and other files depend on the existing data. If, for example, no name for the recipient is given in the purpose of use of the data records, it is not possible to write well readable queries. The better the data material, the simpler the o++o programs become and the more queries are possible. But this also makes clear that the one who knows the input data can write the best o++o programs. A computer scientist, who wants to program general evaluations of such data, will never be able to make the variety possible, which an end user reaches, who knows the contents of the records exactly. The intended use alone offers many possibilities to improve the evaluations, which are certainly not yet exhausted by many.

The importance of a simple query language will be magnified when money transactions in Germany are also completely cashless. If everyone has access to the data on their purchases at a supermarket or gas station, they will be able to determine exactly when and on what they spent their money.

3 Table Recursion - Exponential Growth

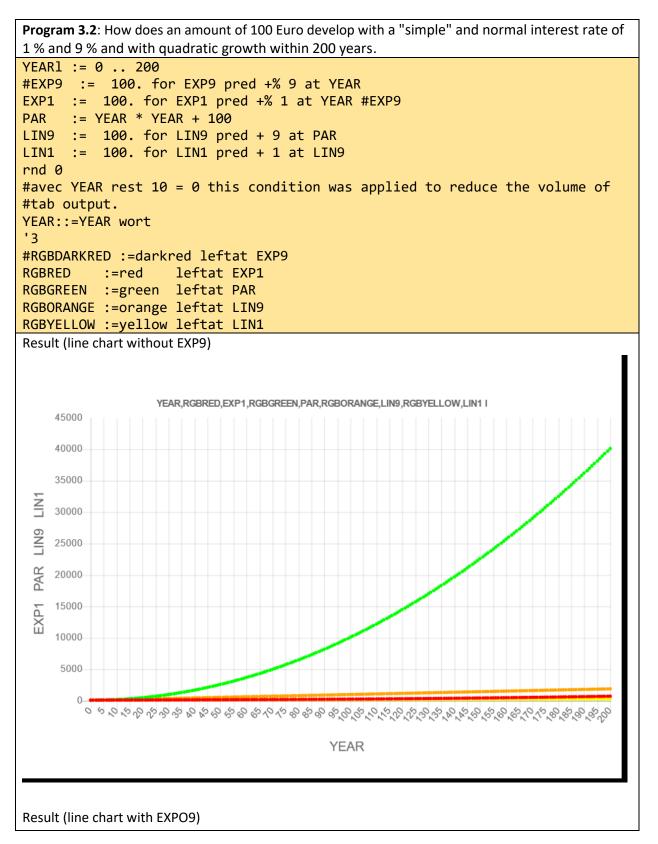
Recursion is a powerful tool to describe functions or data structures in a short form. It is especially used in functional languages like OCaml or HASKEL. We introduce a type of "forward recursion" that is easy to use. An initial value is always described by a value or a term and the following values result from the direct predecessor by means of a second term, respectively. All generated values are visible in the result table.

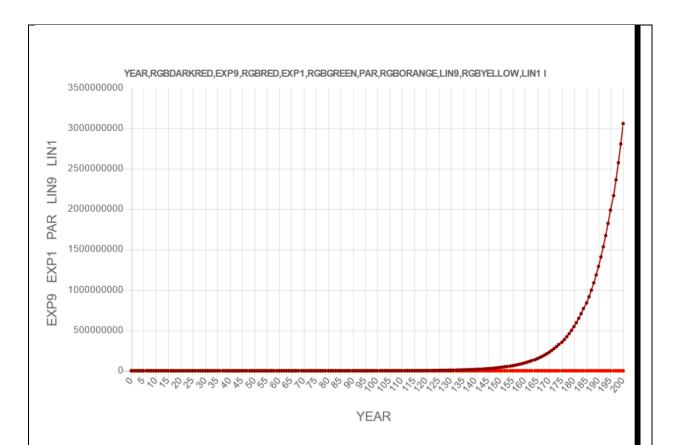
In this way one can describe exponential growth. EXP9 and EXP1 are the program lines for this. At the same time, these two columns in the tab representation contain the growth values. One percent growth is exponential growth if compound interest is taken into account. This is given in both formulas. If one adds in each case only 9% or 1% of 100 to the predecessor, then the interest of the interest is not considered. This would be the growth if one takes the interest from the interest every year. Our formulas for LIN9 and LIN1 correspond to this. These straight-line formulas and the exponential function curves differ here only at one point. If the operation + is replaced by +%, linear growth becomes exponential.


As is well known, exponential growth is far superior to any other growth and thus especially to linear growth. The fact that nine percent interest yields a far better total amount after 20 years than one percent is shown by the last line of the table (\leq 560 versus \leq 122). Without compound interest, the results are \leq 280 and \leq 120, respectively. To better compare with polynomial growth, we have included a parabola.

The green parabola obviously shows a similar behavior in this range of 20 years as the exponential growth of 9 percent (dark red). In the next example we will see that this changes completely if we look at 200 years instead of 20. The yellow curve (1 % without compound interest) and the red curve (exponential growth 1 %) practically did not differ at all.

It should already be mentioned here that the curves are "distorted" so that they look nicer. In school, LIN1 would have to be drawn with an angle of 45°. LIN9 would be almost vertical with an angle of more than 83°. If you did that, the values of the fast-growing functions would have no place on the paper or screen, or you would have to shorten the x-axis (here YEAR) accordingly. But then it would look as if all points and curves were vertical. This undistorted real representation of the points is realized by the output 'bild'. This doesn't look nice, but people should be confronted with reality from time to time. Then they can also better classify the visualizations below.


Program 3.1: How does an amount of 100 Euro develop with a "simple" and normal interest rate of 1% and 9%? and with quadratic growth within 20 years.


```
YEAR1:= 0 .. 20
EXP9 := 100. for EXP9 pred +% 9 at YEAR
EXP1 := 100. for EXP1 pred +% 1 at EXP9
     := YEAR * YEAR + 100
PAR
         100. for LIN9 pred + 9 at PAR
LIN9 :=
         100. for LIN1 pred + 1 at LIN9
LIN1 :=
rnd 0
YEAR::=YEAR wort
RGBDARKRED := darkred leftat EXP9
                     leftat EXP1
RGBRED
           :=red
RGBGREEN
           :=green
                     leftat PAR
RGBORANGE
           :=orange
                     leftat LIN9
RGBYELLOW :=yellow
                     leftat LIN1
Result (line graph):
```


The new column EXP9 is defined by two formulas. The first element of the list of years is assigned the value of the first formula. The second value is calculated by the second formula, where "EXP9 pred" is the value of the predecessor. Therefore, we get 100 +% 9=109 for the second value. The third value is again calculated by the second formula, but now we have to

calculate 109 +% 9=118.81 (rounded to 119). In the same way, all the following values are calculated value by value using the second formula. The rounding does not cause any inaccuracies, because it is done after all calculations.

Result (tab output):

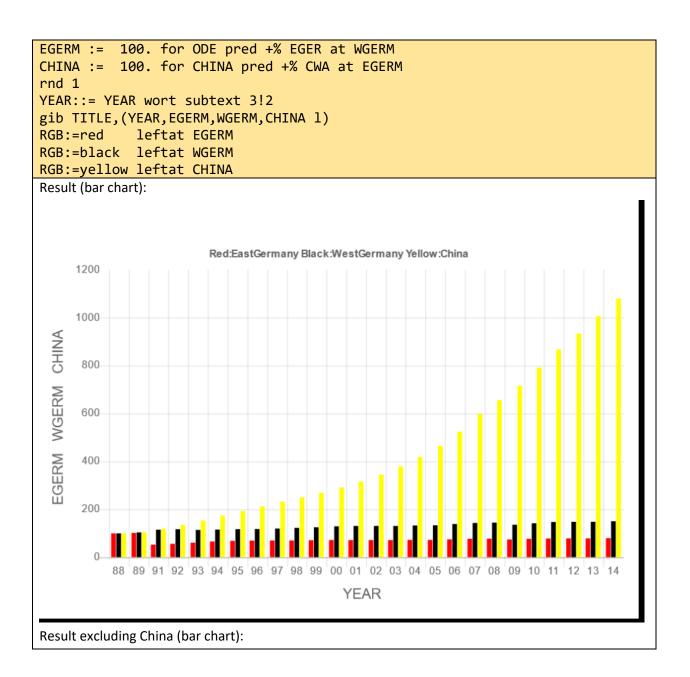
YEAR	,EXP9 ,EXP1	,PAR ,LIN9 ,L	IN1 1
0	100. 100.	100 100.1	00.
10	237. 110.	200 190.1	.10.
20	560. 122.		.20.
30	1'327.135.		
40	3'141. 149.		
50	7'436. 164.		
60	17'603. 182.		
70	41'673. 201.		
80	98'655. 222.		
90		8'200 910.1	
100	552'904. 270.		
110	1'308'925. 299.		
120	3'098'702. 330.		
130	7'335'754.365.		
140	17'366'396. 403.		
150 160	41'112'576. 445.		
160 170	97'328'419. 491.		
170 180	230'411'765. 543. 545'468'442. 600.		
190	1'291'322'174. 662.		
200	3'057'029'208. 732.		
200	5 057 029 200. 752.	40 100 1 900. 3	

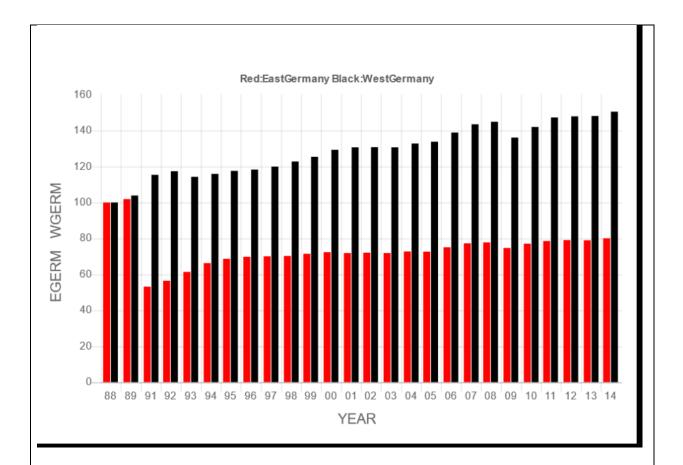
The green parabola is not visible in the second image. The points are behind the other non-dark red points. Therefore, the parabola looks like a straight line here. The straight line turns into a fastgrowing curve when the even faster growing dark red exponential curve is taken out of the picture. This can only be understood by comparing the scalings of the ordinates (Y-axes).

-	problem: Place a grain of wheat on the first square, two on the second, so on. This exponential growth is compared with the polynomial X ⁸ .			
X1 := 1 64				
FIELD := 1 for FIELD pred *2 at X				
HIGH8 := X ^ 8				
FIELD::= FIELD if X<30	! (FIELD div 1'000'000)			
HIGH8::= HIGH8 if X<30	! (HIGH8 div 1'000'000)			
'3				
Result (tab):				
X ,FIELD	,HIGH8 l			
1 1	1			
2 2	256			
3 4	6'561			
4 8	65'536			
5 16	390'625			
6 32	1'679'616			
7 64	5'764'801			
8 128	16'777'216			
9 256	43'046'721			
10 512	100'000'000			
11 1'024				
12 2'048				
13 4'096				
14 8'192				
15 16'384				
16 32'768				
17 65'536				
18 131'072				
19 262'144				
20 524'288				
21 1'048'576				
22 2'097'152	54'875'873'536			
23 4'194'304				
	110'075'314'176			
	152'587'890'625			
	208'827'064'576			
	282 429 536 481			
	377'801'998'336			
	500'246'412'961			
29 208 435 456 30 536	656'100			
30 536 31 1'073	852'891			
31 1 073 32 2'147	1'099'511			
33 4'294	1'406'408			
34 8'589	1'785'793			
35 17'179	2'251'875			
36 34'359	2'821'109			

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
39274'8775'352'00940549'7556'553'600411'099'5117'984'925422'199'0239'682'651434'398'04611'688'200448'796'09314'048'2234517'592'18616'815'1254635'184'37220'047'6124770'368'74423'811'28648140'737'48828'179'28049281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
40549'7556'553'600411'099'5117'984'925422'199'0239'682'651434'398'04611'688'200448'796'09314'048'2234517'592'18616'815'1254635'184'37220'047'6124770'368'74423'811'28648140'737'48828'179'28049281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
422'199'0239'682'651434'398'04611'688'200448'796'09314'048'2234517'592'18616'815'1254635'184'37220'047'6124770'368'74423'811'28648140'737'48828'179'28049281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
434'398'04611'688'200448'796'09314'048'2234517'592'18616'815'1254635'184'37220'047'6124770'368'74423'811'28648140'737'48828'179'28049281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
448'796'09314'048'2234517'592'18616'815'1254635'184'37220'047'6124770'368'74423'811'28648140'737'48828'179'28049281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
4517'592'18616'815'1254635'184'37220'047'6124770'368'74423'811'28648140'737'48828'179'28049281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
4635'184'37220'047'6124770'368'74423'811'28648140'737'48828'179'28049281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
47 70'368'744 23'811'286 48 140'737'488 28'179'280 49 281'474'976 33'232'930 50 562'949'953 39'062'500 51 1'125'899'906 45'767'944
48 140'737'488 28'179'280 49 281'474'976 33'232'930 50 562'949'953 39'062'500 51 1'125'899'906 45'767'944
49281'474'97633'232'93050562'949'95339'062'500511'125'899'90645'767'944
50562'949'95339'062'500511'125'899'90645'767'944
51 1'125'899'906 45'767'944
52 2'251'799'813 53'459'728
52 2 251 755 615 55 455 726
53 4'503'599'627 62'259'690
54 9'007'199'254 72'301'961
55 18'014'398'509 83'733'937
56 36'028'797'018 96'717'311
57 72'057'594'037 111'429'157
58 144'115'188'075 128'063'081
59 288'230'376'151 146'830'437
60 576'460'752'303 167'961'600
61 1'152'921'504'606 191'707'312
62 2'305'843'009'213 218'340'105
63 4'611'686'018'427 248'155'780
64 9'223'372'036'854 281'474'976

You can see that the polynomial on the sixth field has already exceeded the million, but the exponential function is only at 32. In the last line, on the other hand, it becomes clear that the exponential function is larger than the polynomial value by a factor of about 10'000. From position 30 we omitted the last 6 digits to improve the comparability of such large numbers.


Program 3.4: Calculate the total growth of the gross domestic product in West Germany, East Germany, and China in the years from 1992 to 2014 using the growth data given.


<tab!< th=""><th></th><th></th><th></th></tab!<>			
YEAR,	WGER,	EGER,	CHIN 1
1988	0.	0.	0.
1989	3.9	1.85	4.2
1991	11.09	-47.8	13.56
1992	1.7	6.2	14.3
1993	-2.6	8.7	13.9
1994	1.4	8.1	13.1
1995	1.4	3.5	11.
1996	0.6	1.6	9.9
1997	1.5	0.5	9.2
1998	2.3	0.2	7.8
1999	2.1	1.8	7.6
2000	3.1	1.2	8.4
2001	1.1	-0.6	8.3
2002	0.1	0.2	9.1
2003	-0.1	-0.3	10.

2004 1.6 1.3 10.1
2005 0.8 -0.2 11.3
2006 3.8 3.4 12.7
2007 3.3 2.9 14.2
2008 1. 0.6 9.6
2009 -6.1 -3.9 9.2
2010 4.3 3.2 10.6
2011 3.8 1.9 9.5
2012 0.4 0.6 7.7
2013 0.1 -0.1 7.7
2014 1.6 1.4 7.4
!TAB>
avec YEAR>1991
WGERM:= 100. for WGERM pred +% WGER at CHIN
EGERM:= 100. for EGERM pred +% EGER at WGER
CHINA:= 100. for CHINA pred +% CHIN at EGERM
rnd 1
avec YEAR>1991
gib YEAR,EGERM,WGERM,CHINA 1
Result (tab output):
YEAR ,EGERM ,WGERM ,CHINA 1
1992 100.0 100.0 100.0
1993 108.7 97.4 113.9
1994 117.5 98.8 128.8
1995 121.6 100.1 143.0
1996 123.6 100.7 157.1
1997 124.2 102.3 171.6
1998 124.4 104.6 185.0
1999 126.7 106.8 199.0
2000 128.2 110.1 215.8
2001 127.4 111.3 233.7
2002 127.7 111.4 254.9
2003 127.3 111.3 280.4
2004 128.9 113.1 308.8
2005 128.7 114.0 343.7
2006 133.1 118.3 387.3
2007 136.9 122.3 442.3
2008 137.7 123.5 484.8
2009 132.4 115.9 529.3
2010 136.6 120.9 585.5
2011 139.2 125.5 641.1
2012 140.0 126.0 690.4
2013 139.9 126.2 743.6
2014 141.9 128.2 798.6

With a total growth of 100 to 142, East Germany is clearly better in this time interval than West Germany with a growth of 100 to 128. Now let the condition YEAR>1991 be dropped. Furthermore, we assume that the above data enclosed in HSQ brackets are in the file growth.tab.

Program 3.4: Calculate the growth of the gross domestic product in East Germany, West
Germany and China in the years 1988 to 2014 with the indicated growth.
growth.tab
TITLE :="Red:EastGermany Black:WestGermany Yellow:China"
WGERM := 100. for WGERM pred +% WGER at CHIN

Result (tab output):

Result (lab output).	•				
TITEL ,(YEAR	,RGB ,EGERM	,RGB ,WGERM	,RGB ,	CHINA l)	
Red:EastG 88	1.,0.,0. 100.0	0.,0.,0. 100.0	1.,1.,0.	100.0	
89	1.,0.,0. 101.9	0.,0.,0. 103.9	1.,1.,0.	104.2	
91	1.,0.,0. 53.2	0.,0.,0. 115.4	1.,1.,0.	118.3	
92	1.,0.,0. 56.5	0.,0.,0. 117.4	1.,1.,0.	135.3	
93	1.,0.,0. 61.4	0.,0.,0. 114.3	1.,1.,0.	154.1	
94	1.,0.,0. 66.3	0.,0.,0. 115.9	1.,1.,0.	174.2	
95	1.,0.,0. 68.7	0.,0.,0. 117.6	1.,1.,0.	193.4	
96		0.,0.,0. 118.3			
97	1.,0.,0. 70.1	0.,0.,0. 120.0	1.,1.,0.	232.1	
98		0.,0.,0. 122.8		250.2	
99		0.,0.,0. 125.4			
00		0.,0.,0. 129.3			
01		0.,0.,0. 130.7		316.1	
02		0.,0.,0. 130.8			
03		0.,0.,0. 130.7			
04		0.,0.,0. 132.8		417.6	
05		0.,0.,0. 133.8			
06		0.,0.,0. 138.9			
07		0.,0.,0. 143.5		598.2	
08		0.,0.,0. 144.9			
09		0.,0.,0. 136.1			
10		0.,0.,0. 142.0		791.8	
11		0.,0.,0. 147.3			
12		0.,0.,0. 147.9			
13		0.,0.,0. 148.1			
14	1.,0.,0. 80.1	0.,0.,0. 150.5	1.,1.,0.	1080.2	

We have hidden China in the second chart so that it is easier to see Germany's two growth data. For example, East Germany produces less than in GDR times. The banking crisis had a major negative impact on the East German economy, even though East Germany does not have a bank, Too much information can obscure what seems to be essential.

4 Hello otto - gimmick

Program 4.1: Output two words out.
Hello otto
Result (tabh)
WORT1
Hello otto

Program 4.2: Give a pair of two words from.
Hello, otto
Result (tab)
WORT, WORT
Hello otto

Program 4.3: Output a text with spaces.
"Hello Otto"
Result (tab)
TEXT
Hello otto

Program 4.4: Concatenate two words with spaces.
Hello + " " + otto
Result (tab)
TEXT
Hello otto

Program 4.5: Give a greeting with a list of two words.
GREETING := Hello otto
Result (ment)
TABMENT! GREETING
GREETING! WORT1
<greeting></greeting>
Hello
otto

Program 4.6: Output two words each with its own column name.
DEAR:=Hello
GREETING:=otto
Result (tab)
DEAR, GREETING
Hello otto

Program 4.7: Output two words with one column name.
GREETING:= "Hello otto"
Result (tabh)
GREETING
Hello otto

Program 4.8: Sort a set of words.	
GREETING:= {otto Hello}	
Result (tabh)	
TABMENT! GREETING GREETING! WORT1	
GREETING	
Hello otto	

Program 4.9: Represent one word by metadata and the other by primary data.
HELLO := otto
Result (tab)
HELLO
otto

5 o++o for kindergarten?

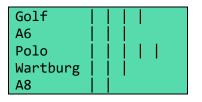
The stroke list is historically the first representation of a number. It could already be a million years old. Notched wood has been shown to be 150 thousand years old. Concepts first developed in history are usually simpler than later concepts. That's why tally charts should have a broader scope even in kindergarten.

The following goals could be pursued with the use of o++o in kindergarten:

- 1. By presenting decimal numbers and stroke lists at the same time, a child can better appreciate the magnitude of numbers. For example, the number one hundred differs from the number ten only by one digit zero. The corresponding stroke lists, however, differ considerably.
- 2. The operation symbols + * : could be taught. They are probably easier to explain on stroke lists. The stroke lists could be converted to decimals and vice versa.
- 3. The algorithm behind the stroke list operation (gib statement) could be taught using appropriate examples.
- 4. Can preschool children formulate appropriate o++o programs? Here one should imagine that an app is developed that replaces letters or words with pictures.

5.1 Stroke Lists

Counting animals of different species could give the following small intermediate table:



If another deer comes, a stroke is added to the second line. If, on the other hand, a turkey comes, a new line must be added with the name turkey and a stroke at the end.

This already poses many problems, although preschoolers can already create such a table if the words have been replaced by pictures or single letters. It is not clear how many columns this table has if only "normal" tables are considered. If we allow structured tables, we can say that this table contains a column ANIMAL and a column STROKE, but the values of the column STROKE can be "repeated" for each animal. An associated schema ANIMAL, STROKE1 m or

ANIMAL, STROKEl l would express this. Where I is an abbreviation for list and m stands for set. These symbols are again used postfix, i.e. they are placed after. The m is necessary in a gib part so that each animal appears only once in the target table.

Since many children are interested in cars, one could count cars analogously to counting animals. This could result in the following table:

Is it possible in kindergarten to increase the structural depth of the table when counting? Then the following (hsqh-) table could have been created:

VW					
Golf					
Polo					

Audi
A6
A8
IFA
Wartburg

5.2 The conversion operations zahl and ||

As a dash (stroke) o++o uses the | (or) character. Several such characters must be enclosed in square brackets on input so that they are interpreted by o++o as a list of strokes. We will illustrate the operations in the following text with self-explanatory examples.

Program 5.2.1: Stroke list to number	Result	
[] zahl	3	

Convert a number into a list of strokes:

Program 5.2.2: Number to tally list	Result	
4 1		

5.3 The operations + *

Different representations of an addition task. The first input type again determines the output type.

Programs 5.3.1: Four plus four	Results		
4 + 4	8		
4 + []	8		
[] + []			
[] + 4			
4 + 4 1			

Different representations of a multiplication task:

Programs 5.3.2: Ten times ten	Results		
10 * 10	100		
Xl:= 110	1		
Yl:= *l 10 at X	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
10 * 10 1			
++text			
cut 10			

|--|

Programs 5.3.3: Two representations of a	Result
subtraction task	
10 - 5	5
[] - 5	

Program 5.3.4 : Place next to each number smaller than 16 the corresponding stroke list	Result
Program 5.3.4: Place next to each number smaller than 16 the corresponding stroke list X1:=015 Y :=X 1	Result X,Y 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
	14 </td

5.4 o++o programs to kindergarten?

Which of the following programs are useful for understanding and which are teachable? When is a syntax too incomprehensible? These questions are outlined below.

Multiplication is counting the number of strokes in a rectangle?

Program 5.4.1 : Each of four children gets 3 apples. How many apples are there in total ?	Result (tabh)
NAMEl := Ernst Clara Sophia Claudia	Intermediate result after the first 2 lines
APPLE1:= [] at NAME	NAME, APPLE 1
++	Ernst
	Clara
	Sophia
	Claudia
	Final result (++ stands for many additions)
	12

The last line can also be replaced and you get the same result.

Program 5.4.2: Each of four children gets 3 apples.	Result (tabh)	
How many apples are there in total?		
NAMEl := Ernst Clara Sophia Claudia	Intermediate result after the first 2 lines	
APPLE1:= [] at NAME	NAME, APPLE 1	
gib APPLE1	Ernst	
++1	Clara	
	Sophia	

Claudia
Final result (++1 counts)
12

Program 5.4.3: Counting different kinds of animals
ANIMAL:=elephant deer elephant pig elephant deer pig pig elephant gib ANIMAL,CNT m CNT:=ANIMAL!++
Result (tabh output):
ANIMAL, CNT 1 Elephant Deer Pig

Program	n 5.4.4 : Co	unting cars
<tab!< td=""><td></td><td></td></tab!<>		
BRAND	COLOR,	TYPE, WEIGHT 1
VW	Blue	Polo 1250
IFA	Papyrus	500 580
VW	Blue	Golf 1450
Audi	Yellow	Quatro 2070
VW	Blue	Polo 1380
IFA	Beige	601 620
VW	Red	Golf 1400
Audi	Red	Quatro 2100
IFA	Beige	601 620
VW	Beige	Polo 1300
!TAB>		
gib BF	RAND, CNT,	,(COLOR,CNT m) m
C	NT:=TYPE	! ++
Result (tabh)	
BRAND	,CNT,	(COLOR, CNT2 1) 1
Audi		Yellow
		Red
IFA	111	Beige
		Papyrus
VW		Beige
		Blue
		Red A

Programs 5.4.5: 3 Division Operations	Results
13 div 4	3
13 : 4	3.25
13 divrest 4	3,1

All these operations seem too complicated for kindergarten.

If one calculates not only with numbers but also with tables, one could introduce new division operations. However, this cannot be discussed to the end at this point.

Program 5.4.6: Problem: Distribute 15 apples	Result (tabh)
among 4 children. Who designs the o++o program?	

Ernst
Clara
Sophia
Claudia

Another very important operation of digitization is selection. Would a database operation like selection be teachable to some degree?

given:

NAME,	AGE	1
Ernst	8	
Clara	6	
Sophia	6	
Claudia	4	
Ulrike	5	
Käthe	4	
a		

myfamily.tab

Program 5.4.7: How old is Claudia?	Result
aus myfamily.tab	NAME, AGE 1
avec Claudia	Claudia 4

avec is French and means with

Program 5.4.8 : All 6 year old children are wanted	Result
aus myfamily.tab	NAME, AGE 1
avec AGE = 6	Clara 6
	Sophia 6

Program 5.4.9 : All children younger than 6 are wanted	Result
myfamily.tab	NAME, AGE 1
avec AGE < 6	Claudia 4
	Ulrike 5
	Käthe 4

6 o++o in School Lessons

There are many possible applications for o++o in school. Especially in the subjects mathematics and computer science. But also in all other subjects o++o can be used to extract data from given tables, documents or from Wikipedia (see: chapter 11). We do not want to present all possible typical query examples here. We want to limit ourselves to the so-called "brute force algorithms" for mathematics. These are the simplest, i.e., the methodologically best. Since all these algorithms are implemented in main memory, we need not worry about efficiency. Now we start with a simple algorithm. We hope that it is the simplest program for a zero. The section ends with programs for grading students and considerations that may be important for kindergarten.

Program 6.1: Calculate in a simple way the zero of the	Result
sine function in the interval [3, 4].	
X1:= 3 4! 0.00001	Xl
avec X sin <0	3.1416
avec X pos =1	

Program 6.2 : Calculate in a simple way the zero of the sine function in the interval [3, 4].	Result
Xl:= 3 4! 0.00001	Xl
avec X sin * (X +0.00001 sin) <=0	3.14159

Program 6.3 : Calculate the integer zeros of the polynomial " X^2 -15X+56".	Result (tabh)
X1:= -100 100	X1
avec X poly [1 -15 56]=0 # or avec X- 15 *X + 56=0	78

With the following programs, it is shown that students who have not learned integral and differential calculus are nevertheless able to understand and use their school applications, which are essentially: 1. How large are areas under curves?

2. What are local extrema of functions?

Program 6.4 : Calculate the area under a circular arc with diameter 4 in the interval [0, 2].	Result
Xl:= 0 2!0.0001	AGG
HEIGHT:= X*X - 4 abs sqrt RECTANGLE:=HEIGHT*0.0001 ++ RECTANGLE	3.14169223791

Program 6.5: Query 6.4, but shorter and more precise.		
PI:=0 2!0.000'001 poly [-1 0 4] sqrt*0.000'001 ++ '3		
Result		
PI		
3.141'593'653'28		

```
Program 6.6: Determine pi by zero determination with interval bisection
MI,LE,RI 1:= 1.,2.,4. while RI - LE >= 0.000'000'01 !
```

LE pred +(RI pred) :2;	
(MI,RI pred) if MI sin > 0!(LE pred,MI)	
avec MI pos- =1	
gib MI	
'3	
Intermediate result after first program line (tab):	
MI ,LE ,RI l	
1. 2. 4.	
3. 3. 4.	
3.5 3. 3.5	
3.25 3. 3.25	
3.125 3.125 3.25	
3.1875 3.125 3.1875	
3.15625 3.125 3.15625	
3.140625 3.140625 3.15625	
3.1484375 3.140625 3.1484375	
3.14453125 3.140625 3.14453125	
3.142578125 3.140625 3.142578125	
3.1416015625 3.140625 3.1416015625	
3.14111328125 3.14111328125 3.1416015625	
3.14135742188 3.14135742188 3.1416015625	
3.14147949219 3.14147949219 3.1416015625	
3.14154052734 3.14154052734 3.1416015625	
3.14157104492 3.14157104492 3.1416015625	
3.14158630371 3.14158630371 3.1416015625	
3.14159393311 3.14158630371 3.14159393311	
3.14159011841 3.14159011841 3.14159393311	
3.14159202576 3.14159202576 3.14159393311	
3.14159297943 3.14159202576 3.14159297943	
3.14159250259 3.14159250259 3.14159297943	
3.14159274101 3.14159250259 3.14159274101	
3.1415926218 3.1415926218 3.14159274101	
3.14159268141 3.1415926218 3.14159268141	
3.14159265161 3.14159265161 3.14159268141	
3.14159266651 3.14159265161 3.14159266651	
Result	
MI	
3.141'592'666'51	

It can be seen that the first 7 digits of pi (3.141'592'65359...) after the decimal point are correct and that this correctness requires only 28 steps.

Program 6.7: Calculate the first 7 Fibonacci numbers.
Xl:= 1 7
FIB1,FIB2:= 0,1 for FIB2 pred ;preds ++ at X
Result (tab)
X, FIB1, FIB2 l
1 0 1
2 1 1
3 1 2
4 2 3
5 3 5

65	8
78	13

Program 6.8 : Calculate the Pascal triangle up to the exponent 9.
N1:= 0 9
XTUP:= 1 for 0,(XTUP pred) + (XTUP pred, 0) at N
wort
Result (tab)
N, XTUP 1
0 1
1 1,1
2 1,2,1
3 1,3,3,1
4 1,4,6,4,1
5 1,5,10,10,5,1
6 1,6,15,20,15,6,1
7 1,7,21,35,35,21,7,1
8 1,8,28,56,70,56,28,8,1
9 1,9,36,84,126,126,84,36,9,1

Now we present a brute force algorithm for a maximum.

 Program 6.9: Find in a simple way for the local maximum of the sine function in the interval [1, 3].

 LOCMAX:=1 ... 3.!0.00001 sin max '3

 Result

 LOCMAX

 0.999'999'999'993

```
      Program 6.10: Calculate the sine function and an approximation of the first derivative in the interval [0,4].

      X1:= 0 ... 10!0.01

      SINUS := X sin

      DERIVATIVE:=X+0.000'1 sin -(X sin):0.000'1

      RGBSIN:=green leftat SINUS

      RGBDERIVATIVE:=red leftat DERIVATIVE

      Result (bild):

      Result (tab): It consists of 1001 lines.
```

Х	,RGBSIN	,SINUS	,RGBDERIVATIVE	,DERIVATIVE	1
0.	0.,1.,0.	0.	1.,0.,0.	0.999999998333	
0.0	1 0.,1.,0.	0.00999983333417	1.,0.,0.	0.999949498758	
0.0	2 0.,1.,0.	0.0199986666933	1.,0.,0.	0.999799005067	
0.0	3 0.,1.,0.	0.0299955002025	1.,0.,0.	0.999548532308	
0.0	4 0.,1.,0.	0.0399893341866	1.,0.,0.	0.999198105529	
0.0	5 0.,1.,0.	0.0499791692707	1.,0.,0.	0.998747759772	
0.0	6 0.,1.,0.	0.0599640064794	1.,0.,0.	0.998197540071	
0.0	7 0.,1.,0.	0.0699428473375	1.,0.,0.	0.997547501448	
0.0	8 0.,1.,0.	0.0799146939692	1.,0.,0.	0.996797708907	
0.0	9 0.,1.,0.	0.089878549198	1.,0.,0.	0.995948237425	
0.1	0.,1.,0.	0.0998334166468	1.,0.,0.	0.994999171949	
9.9	8 0.,1.,0.	-0.527131998452	1.,0.,0.	-0.849757059217	
9.9	9 0.,1.,0.	-0.535603334614	1.,0.,0.	-0.844442914713	
10.	0.,1.,0.	-0.544021110889	1.,0.,0.	-0.83904432662	

The following examples are based on a fictitious table of grades with exams:

NAME,	(SUBJECT,	EXAl,MARK1 1)1
Einstein	German	1 3 1 2 1 3 1
	Physics	1 a 1 2 1 1 1 1
	Algebra	12 112
	Art	3 3 2 1
Gauss	German	2 3 1 2
	Algebra	11 111
Guericke	physics	s 1 1 2 1
		2 1 1 2 1 1
		1 1 2 1 1 2
Newton	Physics	1 1 2 1 1
Confucius	Philosophy	11 1111
	Chinese	1 1 2 1 1
Marx	economics	1 1 2 1 2 1
	Philosophy	1 2 1 3 1
Brecht	German	11 1111111
	Philosophy	1 2 2 1 1 2
Cantor	set theory	11 111

Tabment 6.1: guys.tabh (s: sick, a: absent)

Program 6.11 : Calculate the weighted average scores for each person and subject and the total value. Sort the data.
<pre>aus guys.tabh gib AVG,(NAME,AVG,(SUBJECT,AVG m)m) AVG:=EXAl ++: *0.6 + (MARKl ++: *0.4)! ++: rnd 1</pre>
Result (tab):
AVG, (NAME, AVG2, (SUBJECT, AVG3 m) m)
1.4 Brecht 1.3 German 1.0 Philosophy 1.5
Cantor 1.0 set theory 1.0
Confucius 1.1 Chinese 1.1
Philosophy 1.0
Einstein 1.7 Algebra 1.4 Art 2.4

		German	1.8
		Physics	1.1
Gauss	1.6	Algebra	1.0
		German	2.1
Guericke	1.2	Algebra	1.2
		German	1.4
		physics	1.1
Marx	1.4	Philosophy	1.6
		economics	1.2
Newton	1.1	Physics	1.1

If we want to calculate the average after the completion of the first test, we can use the following formula:

```
AVG:= EXAl nth 1 *0.3 + (MARK1 ++: *0.7)! ++:
```

Program 6.12	2: Determine a	all subje	cts and i	individuals that received a 1 and a subsequent 3.
aus guys. avec NAME		1ARK=1	& MARK	K succ=3 #succ = successor
Result:				
NAME, (S	SUBJECT,	EXAl,	MARK1	1)1
Einstein G	German	13	121	3 1
Marx P	hilosophy	12	1 3 1	

Now we turn to other "simple" problems. It may be that these tasks are important not only for school, but also for kindergarten. Now it is commonly assumed that addition of natural numbers is the easiest and division the most difficult of the four basic arithmetic operations. This could be wrong. We did experiments with a 3-year-old and a 6-year-old kindergartener. The task was to divide 11 apples among four children. The four children were represented by photographs. Neither the 6-year-old child nor the 3-year-old child had a problem. They obtained the same result in the division. It was presented in a table:

CHILD,	APPLE	
Ernst		
Clara		
Sophia		
Claudia		

Tabment 6.1: 11 divided by 4

What can we learn from this experiment?

- 1. Young children can not divide an apple. They do not yet have a clear understanding of 1/2 or 2/3, ..., so that "ordinary" division cannot be taught.
- 2. There is no remainder in the division; there is no reason to waste anything.

Let's consider **addition**, the next simplest operation. The simplest representation of the number three are three strokes. The same is true for any number of other natural numbers. Here we consider only two numbers: 3 and 4.

We have to represent them by lists or bags (multisets) because the set $\{| \ |\}$ is the same as $\{|\}$. The result of each operation would be one.

APPLE 1	

three.tabh

APPLE	1		
four.ta	abh		

Program 6.13: three plus four	Result
aus three.tabh,four.tabh	APPLE1
gib APPLE1	

Here, too, it becomes clear that such a process could require only a small amount of effort in the classroom. But what is the result of 4 apples and 3 pears? Since each pair of two tabments is again a tabment, the result of this "addition" could be a tabment of the type APPLEI, PEARI.

Multiplication can also be handled in a very simple way. Consider the very simple question of how many apples are needed for 4 children if each child wants 3 apples:

Program 6.14: four times 3	Intermediate result after line 2
· · · · · · · · · · · · · · · · · · ·	CHILD, APPLE 1
APPLE1:= [] at CHILD	Ernst
gib APPLE1	Clara
	Sophia
	Claudia

Not only is this multiplication algorithm simpler, it also makes it clear that multiplication is essentially calculating the area of a rectangle.

We also obtain the above intermediate result by the following program:

```
CHILD1:=Ernst Clara Sophia Claudia
APPLES:= [ | | | ] at CHILD
gib CHILD,APPLES 1 # APPLES is atomic, i.e. each apple list is transferred
# as one unit
```

If we want to apply the **subtraction operation** to collections with different elements (sets), the subtraction can be expressed by a selection.

Program 6.15: Subtraction (difference) with sets	Result
NAMEm := {Ernst Clara Ulrike}	NAME1
<pre>sans NAME in {Ulrike Sophia}</pre>	Clara Ernst

We conclude this section with the following statements:

- 1. The result of our "arithmetic operations" are not numbers, but tables.
- **2.** Dealing with tables is probably easier than dealing with numbers because the level of abstraction is lower.

7 Multiplication, School and Digitization

In this chapter, it will be shown that the common multiplication algorithm for decimal numbers could and should be supplemented by simpler ones and that, more generally, deep digitization (TD) should be pursued. Deep digitization can probably only be implemented through mathematical understanding. Unlike shallow digitization, where the user is usually presented with a computer result by simply clicking a button and is often unsure if that result is correct, deep digitization should allow the user to understand the result in the same way as calculating 132.66 times 453.2 with a calculator. That could be the area of his property. The big difference between today's use of calculators and today's use of powerful computers is that users have spent years learning the single data operations: + - * : sin log Bulk data operations are not yet on the curriculum. Selection - sometimes called a filter operation - and operations to merge table contents for restructuring ... we count among the mass data operations. These are not applied to individual numbers, but to possibly very large structured tables that may contain words and text in addition to numbers. If the user has understood such mass data operations and they have been implemented within the framework of a programming language, he can also interpret these results and, in case of doubt, correct, change or improve them.

7.1 Who can multiply in their head?

Incident 1

In a mathematics exam that a second-year pharmacy student from Bologna had to take, the student had to calculate 7 times 8, among other things. The pharmacy student: 59 The algebra professor: But 59 is not an even number. The pharmacy student: 64

Incident 2

Wallerie - an Erfurt kindergarten girl in the large group - is already a student today. I gave her a task: How many effervescent bottles does a crate with 4 rows contain if there are 5 bottles in each row? Wallerie thought for a while: Nineteen

Her father - a young engineer: You don't calculate, you guess.

Incident 3

I ask Isabella, a second grade pupil from Gerwisch: How much is 3 times 4? After a while: Twelve The father: That took a long time.

From the second occurrence, I conclude that preschoolers have already understood the essence of multiplication. Of course, it is possible that some preschoolers.... cannot calculate 4 times 5 exactly in their head. But 3 times 4 I would trust any child to do. There is no question that they will never be able to calculate 12 times 13 in this way. In fact, I don't think any human being is capable of calculating 7 times 8 in their head. Older adults have had to calculate(?) the multiplication tables so many times in school that they can only do it by heart and don't remember how they multiplied as a child. It used to be very important to know the multiplication table by heart because it was a prerequisite for written decimal multiplication.

The opinion of an amateur neurologist: In the many school years that the multiplication tables were taught, the original neuron connections or brain cells were "overwritten" and are practically no longer present.

Therefore, the vast majority of adults are not able to perform the original multiplication in their heads. They can only do multiplication tables by heart and cannot do written decimal multiplication in their heads. Even when multiplying smaller numbers such as 29 times 63, they will work with easier-to-use arithmetic laws and not use the algorithm in which their teachers, parents and

grandparents invested a lot of time and effort. Based on incidents 1, 2, and 3, one can even surmise that many adults don't even know that children have to do math to get the results. When you're that young, you can't memorize it yet without doing the math. An almost correct answer indicates that arithmetic has been done, just as a very quick answer indicates that arithmetic has not been done, and thus no thought has been given.

7.2 Who can multiply in writing?

Calculating 7 times 8 with a pencil should be mastered by every child in the second grade. The prerequisite is that you can imagine the numbers up to one hundred. You can do that if you can count to a hundred. If you illustrate the task, many children should be able to solve it even faster: Each of the seven children wants eight candies. How many candies do you need to buy?

- 1. Write the names of seven children one below the other.
- 2. Put eight strokes legibly after each name.
- 3. Count all the strokes.

Everyone can imagine that you can multiply arbitrarily large numbers with this algorithm. But it would be nice if you could not only pronounce the result and write it as a word, but if you could write the result more compactly as a decimal number.

4. Convert the result into a decimal number.

If someone wants to calculate 100 times 100 in this way, the probability of getting a correct result is very low. Moreover, it would take a very, very long time. In the age of powerful computers, however, these arguments should be insignificant. What matters is to have a clear understanding of an algorithm. The question remains:

Is stroke list multiplication the simplest multiplication algorithm?

7.3 Who can program the multiplication?

Incident 4

An engineer from my former institute tells me that she was the first to learn assembler at the Staßfurt television factory. With it, she was able to solve efficiency problems after the reunification, which a new boss of the TV set factory had not trusted her to do. She remembers very clearly that she had great difficulty learning C.

Incident 5

Since I was not a professor, I was able to participate in IBM Germany's visiting scientist program in 1992. In the IBM Research Center - the scientific center in Heidelberg - the database project AIMP (Advanced Information Management Prototype) had been developed for many years. Essentially, this involved the database query language HDBL (Heidelberg Database Language), with which NF² relations could be processed. These relations generalize the table concept of the relational data model to structured tables. In the end, however, IBM Germany was not able to convince the headquarters in the USA that their prototype should be brought to market. Even more remarkable to me was that an employee who was listed as an author in a very large number of publications on HDBL could not answer the simplest questions about HDBL. He then explained to me that he had programmed for years in PASCAL for HDBL file management and actually had no interest in formulating queries in HDBL.

Incident 6

I wanted to understand UNIX and bought the book "UNIX und C" from VEB Verlag und Technik. I read, marked, read, marked, read, marked and repeated. But only slowly and with little success.

In my opinion, the most important conclusion from these events is that it is very important which language you learn first. Relearning should usually be more difficult than newlearning. Furthermore, one must assume that ways of thinking from procedural or object-oriented programming languages offer few advantages for query languages. Furthermore, one can certainly not learn programming by reading alone. You have to make mistakes yourself.

I think operations can be taught to most people through algorithms rather than descriptive formalizations. If someone can program an algorithm, he can or should break it down into more elementary steps to understand it better. If suitable programming languages are available, decimal multiplication does not stand a chance against the stroke list algorithm in terms of learnability and readability. No matter how high the abstraction level of a programming language is. I believe less than one percent of the world's population today can program decimal multiplication in 30 minutes. In fact, far less than 1 percent of the world's population are software developers.

Recently, according to Hacker Rank, China not only took first place in functional programming through well-organized programming Olympiads, but also first place in the overall ranking of the "best developers" in the world, ahead of Russia. For me personally, this is particularly impressive because a Chinese student who graduated with me in 2009 told me that he left China because he was supposed to learn PASCAL at his Chinese university first. He did not consider this (methodically perhaps not so bad) language to be up to date.

The economic effects, which are certainly also due to China's education policy, can already be clearly seen today. From 1990 to today, Germany's share of global exports of high-tech goods has almost halved. China has increased its share from one to 24 percent during this time (according to Handelsblatt).

The corresponding code can certainly be solved most elegantly in the functional French language OCaml. That OCaml has very good concepts and efficient implementations can perhaps also be seen from the fact that Microsoft has copied OCaml. F# even has the same syntax as OCaml.

Let's first look at a multiplication algorithm at what I consider the high abstraction level of functional programming.

However, let's first briefly clarify how multiplication is practically performed in OCaml:

Program 7.3.1 : User-level integer multiplication	Result
in OCaml	
7*8;;	- : int = 56

For 7.1 times 8.1 you have to choose another operation symbol.

Program 7.3.2 : Multiplication of floating point numbers on user level in OCaml	Result
7.1 *. 8.1;;	- : float = 57.51

OCaml also has a data type bigint for arbitrarily large integers.

Certainly, one can imagine that even very small children can click the keys 7, *, 8 and =. But it should be clear that this clicking will not lead to understanding, nor will these clickers themselves be able to solve a corresponding problem. Even typing such examples a hundred times will not sufficiently improve understanding of multiplication. Now follows a program for multiplication in OCaml. We call the corresponding operation mult. This is based on a previously defined new data type nat. Without the "auxiliary" operation add, it might be difficult to program mult. A conversion of the self-defined datatype into decimal numbers is omitted at this point. The following syntax is very elegant, but in a certain sense also tricky. We do not want to go into details here and refer to the OCaml documentation on the Internet. Even if you are not familiar with functional programming and with OCaml, you can see that the programs are ingeniously compact and clear. The

reason for this is that in this case you don't have to think of a natural number in decimal or binary. Rather, the definition of nat is based on the childish idea of counting zero one two three ... except that you don't always have to invent new words for new numbers. According to the following definition, O=zero, 1=successor zero, 2=successor(successor zero), and 3=successor(successor zero)), ... This naive conception of the natural numbers, which certainly every child already possesses very early without learning it, was "rediscovered" only in 1889 by Peano. A side note: Picasso actually also worked his whole life to be able to paint in a childlike, naive way again.

All **axioms of Peano** are hidden in the two lines of the program. They actually only say:

- 1. Zero is a natural number
- 2. Every natural number has exactly one successor.

The fact that the operations are practically useless without the use of decimal numbers for input and output is irrelevant at this point. Here it is only about getting an impression of the logical problems.

```
Program 7.3.3: Multiplication of natural numbers with own data type in OCaml
type nat =
   Zero
   Succ of nat
;;
let rec add x = function
    zero
          -> X
  Succ y -> Nachf(add x y)
;;
let rec mult x = function
         -> zero
    zero
  Succ y -> add x (mult x y)
  ;;
let eight=Succ seven;;
mult seven eight;;
Result (nat):
- : nat =
Succ
 (Succ
  (Succ
    (Succ
      (Succ
       (Succ
         (Succ
           (Succ
            (Succ
              (Succ
                (Succ
                  (Succ
                   (Succ
                     (Succ
                       (Succ
                        (Succ
                          (Succ
                            (Succ
                              (Succ
                               (Succ
                                 (Succ
                                  (Succ
                                    (Succ
                                      (Succ
                                        (Succ
                                         (Succ
                                           (Succ
```

(Su	
(34	Succ
	(Succ
	Zero)))))))
)))))))))))))))))))))))))))))))))))))))	20.0///////

I would be very happy if someone would send me another well understandable own multiplication program. It will then be published on the **ottops.**de page.

Program 7.3.4: Stroke list multiplication in o++o
NAMEl:=Tina Ernst Clara Sophia Ulrike Claudia Kathe STROKEl:= [] at NAME gib STROKEl ++1
Intermediate result after 2 lines in tabh format
NAME, STROKEl 1
Tina
Ernst
Clara
Sophia
Ulrike
Claudia
Kathe
Final result
56

If you are only interested in the end result, you can also replace all names with one. You could also write a gib statement for the last two lines that counts through regardless of the given structure:

Program 7.3.5: Shortened stroke list multiplication in o++o
NAME1 := otto *1 7
STROKE1:= *1 8 at NAME

<pre>gib SEVEN_TIME_EIGHT SEVEN_TIMES_EIGHT:= STROKE! ++1</pre>
Result
SEVEN_TIMES_EIGHT
56

Everyone can freely choose new column names in o++o. However, lowercase letters must not be used. Instead of SEVEN_TIMES_EIGHT you could also choose the shorter PRODUCT_7_8. The column name SEVEN_TIMES_EIGHT in the gib part does not occur in the table created with the first two rows. It is intended as a new aggregation column. The last line expresses that this single output column should be calculated by the counting aggregation (++1). Because of the indentation (4 spaces) this line logically still belongs to the gib statement.

This program can only be formulated because o++o works with structured tables. Everybody should judge for himself which multiplication is more child-like and therefore easier to understand. At this point it should be mentioned that o++o multiplication is much more general than in other programming languages. However, this does not mean the program above, but the operation hidden behind the symbol *. For example, you can multiply a whole tabment by a number:

Program 7.3.6: Convert several German net prices with o++o into gross prices.
66.1 675.8 77 *1.19
Result (tabh)
PZAHL1
78.659 804.202 91.63

A math teacher at the Magdeburg Physical Education High School noted that students have no trouble multiplying in writing in positional systems other than the decimal system. Let's talk about binary numbers for a moment. From my point of view, it is very interesting that it again took a mathematical genius like Leibniz to make dual numbers respectable, although calculating with dual numbers is much easier than calculating with decimal numbers. This would, of course, also make binary multiplication much easier to teach than decimal multiplication. One only has to memorize a small multiplication table:

- 0*0=0
- 1*0=0
- 0*1=0
- 1*1=1

This algorithm has other advantages: It is very efficient - both in terms of memory and speed. That is why it is used in computers. Not everyone needs to be aware of it. Even if the user knows only decimal multiplication, there can be no problems. His decimal numbers can be converted to binary without his knowledge, binary calculations are performed, and when the result is output, it is converted back to decimal. Similarly, one can imagine that a decimal number is converted to a dash number for a child (user), dash multiplication, which he should have understood, is applied, and the dash number is converted back to decimal. This is to express that the user should learn the most memorable and useful multiplication algorithm and be able to trust that the computer experts will "implement" his algorithm correctly.

This is only to say that the results should be correct. Internally, another, more efficient algorithm can be used. Of course, this idea of internal optimization does not only apply to multiplication algorithms. The section concludes with a multiplication algorithm that is reminiscent of pivot tables, but very close to the decimal multiplication algorithm taught in schools today. The pivot element can be determined with 2 o++o lines.

Program 7.3.7 : Multiplication of a list of length 2 by a triple using matrix multiplication in o++o
10 3 *mat (100,20,4)
SU:=ZAHL tup ++
addaggs ZAHL ! ++
Intermediate result after the first line in tab format
ZAHL ,ZAHL ,ZAHL 1
1000 200 40
300 60 12
Intermediate result after applying the second line in tab format:
ZAHL ,ZAHL ,ZAHL ,SU 1
1000 200 40 1240
300 60 12 372
Final result in tab format
ZAHL ,ZAHL ,ZAHL ,SU 1
1000 200 40 1240
300 60 12 372
1300 260 52 1612

The final result of multiplying 13 times 124 is 1612.

Math teachers must find out whether this multiplication is easier to teach than today's multiplication with decimals by having entire classes multiply using both methods.

Program 7.3.8: A complete o++o programm for multiplication, based on matrix-multiplication
X:=4321
Y:=678
XXl:=X zil zahl
YYl:=Y zil zahl
XL:=XXl ++1
YL:=YYl ++1
BXl:= 10 *1 XL hoch (XL- 1 0! -1) * XXl
BY1:= 10 *1 YL hoch (YL- 1 0! -1) * YY1
MATRIX:= BXl *mat (BYl transpose)
SU:=SP1 tup ++
addaggs SP1 ! ++
gib SU l
ultimo
'3
Result (tab)
SU1
2'929'638

The operation zil transfers a text into the list of its characters (Chinese zi). This and other operations could also be used advantageously for teaching German or English. Each letter is converted into a digit by the conversion function zahl. Teaching pivot multiplication in one form or another would also prepare students for the use of pivot tables, which play a large role in today's practice.

The last program in this section is intended to implement pivot multiplication with the help of o++o operations.

Program 7.3.9: More detailed matrix multiplication of factors 7'653 and 4'322 in o++o
defop \$X myop.powerlist = begin

```
X11:=$X zil zahl
gib X1 l-
XPOT:= (10 ^ (X1 pos - 1))
X2:= XPOT * X1
gib X21-
end
aus 7'653 myop.powerlist
*mat 4'322 myop.powerlist transpose
addaggs SP1 ! ++
ultimo
++
'3
Final result (tab)
33'076'266
```

7.4 Stroke list multiplication versus decimal multiplication

The written decimal multiplication had a great importance because many people could calculate with it even two 8-digit numbers correctly with high probability. The correctness could be improved even more by the sample of nine. In addition, it was by far the fastest algorithm in earlier practice.

The later slide rule was faster, but not as accurate. The number table with logarithms was too demanding for some. In the age of computers, both techniques have already been mothballed.

The written decimal algorithm is still used by many people ..., and everyone who masters it is proud of his skills. The question is: Can we replace the decimal multiplication algorithm in school with the stroke list multiplication or/and complement it with other multiplication algorithms?

The dash multiplication has not only the advantage that it can be taught already in an earlier class. If this algorithm is repeated accordingly, everybody notices that just this multiplication realizes the standard application - a rectangular area calculation. To derive this application from decimal multiplication seems too difficult. Given the programmability of both algorithms, it should quickly become clear that dash multiplication is far superior to decimal multiplication. The dash list multiplication above requires 4 steps to be processed in sequence. In particular, there is no loop and no recursion. On the other hand, the above algorithm shows that a programming language must be able to work with structured tables in order to provide user-friendly multiplication programs. Since this stroke multiplication processes mass data in a sense, it prepares better for the digitization of society than the algorithm taught in schools today. If it is desired that everyone should be able to program multiplication, simpler multiplication algorithms must be taught.

7.5 How could enrich o++o the school curriculum?

We have developed a data model with an associated programming language o++o, which should not only be the basis for information systems for business, but also offer many advantages for school teaching. Since the language o++o is based on mathematical concepts, it should be integrated into mathematics classes. But, also in the other subjects o++o can be used usefully, because the extraction and visualization of information from the German Wikipedia seems to be important for every school subject. A programming language should enable students to better solve the many tasks they will face in their future. This is especially true for the digitalization ahead of us. Digital actually means that everything comes down to two things - zero and one. I can't imagine anyone tracing the powerful stroke list operation behind the gib statement, for example, to such thinking. Our axioms of the stroke list operation were formulated at a high abstract algebraic level, where thinking in terms of zeros and ones is only a hindrance. For mathematics, abstraction is more important than digitization in the true sense of the word. Although o++o has so far only dealt with questions of content, CSS in o++o can also be used to realize many questions of format. The following example shows that it also makes sense to capture form questions directly in o++o:

Program 7.5.1: The product of 5 numbers in thousands format in o++o
28'911 5'233 199 6'311 6'781 ** '3
Result
1'288'424'128'758'129'267
1 288 424 128 738 125 207

o++o could perhaps be taught in the lower grades:

Program 7.5.2: The sum of the first hundred numbers (Gauss problem)
1 100 ++
Result
5050

I think that these and many other difficult problems could be taught in the lower grades as well. So as not to be misunderstood at this point. We should already be drawing on experience gained decades ago with calculators when introducing digitization in schools. Also, the too early and too wide use of calculators has probably led to many students having a poorer command of basic arithmetic..., worse at calculating in their heads than in earlier grades. With incorrect inputs to the calculator, many also seem unable to estimate the expected magnitudes of the results. For this reason, the calculator is not allowed here until seventh grade.

For example, I even think that spelling programs like WORD should not be taught in school until about the seventh grade, either. If a student has experienced firsthand that WORD corrects almost all of his spelling mistakes, it is very difficult to make him understand ... that his own spelling skills are important for his future. Similarly, I would have the introduction of digital whiteboards critically examined.

Last December, at the University of Halle, I noticed that mathematics professors were still working with blackboards and ordinary chalk.

Program 7.5.3: Execute an o++o program in the second class on the blackboard.

4 3 1 12 ++

This calculation on the blackboard with chalk or pencil could also prepare for future digitization. In addition, for motivation reasons, the teacher could already demonstrate to the lower grade students that the symbol ++ can be used to solve the Gaussian problem or even larger problems. In my opinion, many people do not actively know how to formulate a conditional, although it is not difficult. However, it is not part of the curriculum. The conditions that select all people living in Magdeburg LOCATION=Magdeburg or filter out all rivers that are longer than 1000 km LENGTH>1000 do not look complicated. Many can't do that, because today's search engines don't ask for that or can't handle it. But if I need to spontaneously extract important information from a company database in a future company, I need to know that.

In my opinion, students' problem-solving skills can be improved in many ways. Even the applications of differential and integral calculus could be taught in secondary schools without having to understand the difficult theories of Leibniz and Newton. With o++o, we can calculate areas under curves in a short line of code without using hard-to-read loops. An approximation of the area under a part of the first sinusoidal arc can be calculated in one line using Archimedes' 2000 year old algorithm:

```
      Program 7.5.4: This o++o program does not require integral calculus!

      1 ... 2!0.0001 sin *0.0001 ++

      Result
```

0.956536680039

In the following, an application of differential calculus is presented, which can be performed without knowledge of differential calculus.

Program 7.5.5: An o++o program to approximate the local minimum of the parabola (a special
polynomial) "3 x^2 + 4 x + 6"!
-10 10!0.0001 poly [3 4 6] min
Result
4.66666667

I believe that this can be taught already in every 9th or 10th grade, without going into details here. When I talk to students, I sometimes have the impression that computer science classes are more about form issues (HTML, ...) than content. We know that it is very hard, but we should still reach the goal given by our Dr. A. Merkel: **Everyone should learn to read and calculate, but also to program**. If you look at programming languages like C, Java or Python, the goal is not feasible. For that, you need simpler languages that are able to solve end-user problems with short programs. C and Co. had other goals. They should serve to program systems on which hundreds or more people can work, which can contain many millions of lines of code and still work performantly. o++o follows the new paradigm of table-oriented programming and has above all the goal formulated by A. Merkel. If o++o had not put methodical and pragmatic questions in the foreground from the beginning, this goal would not be realizable also with o++o. Mastering operations for mass data seems to be necessary for a long-term digitization strategy.

7.6 Can the stroke list operation be taught as early as third grade?

As already mentioned, the gib statement, which includes the dash list operation, is a powerful tool. It can be used not only to sort normal flat tables, but also any tables. At the same time, you can also use aggregations such as ++ (sum), ++1 (count), etc. If third grade students have difficulty with a formal syntax, it does not necessarily mean that the algorithm behind it cannot be taught. For example, they could count animals. This does not have to be just a number. A table that determines the number for each type of animal would certainly be easy to teach as well:

Program 7.6.1: Counting animal species with strokes
ANIMAL:=donkey sow boar donkey boar sow donkey gib ANIMAL,CNT m CNT:=ANIMAL! ++
Result (tabh)
ANIMAL, CNT m
Boar Donkey Sow

The following example is a bit more demanding, because the results table is structured.

Progra	m 7.6.2 : Co	unting in	structured tables
<tab!< th=""><th></th><th></th><th></th></tab!<>			
BRAND	,COLOR,	TYPE,	WEIGHT 1
VW	Blue	Polo	1250
IFA	Papyrus	500	580
VW	Blue	Golf	1450
Audi	Yellow	Quatro	2070

1/1.1	D1	Dele	1200	
VW	Blue	Polo	1380	
IFA	Beige	601	620	
VW	Red	Golf	1400	
Audi	Red	Quatro	2100	
IFA	Beige	601	620	
		Polo	1300	
!TAB>				
gib BR	AND, CNT	, (COLO	R,CNT	m) m
	IT:=TYPE	•	-	
		• • • •		
Result:				
BRAND,	CNT,	(C)	OLOR,	CNT2 m) m
Audi		· · · · · · · · · · · · · · · · · · ·	ellow	
			ed	
IFA			eige	
	1 1 1		apyrus	
VW	111		eige	
VV			lue	
		R	ed	

You can perhaps imagine children counting and sorting at the blackboard using this algorithm. In o++o a set (m) or a multiset (bag) is always sorted by the first column names. In the example above these are BRAND and COLOR.

That is, children can presumably sort data in structured tables. However, today's computer science students do not learn a sorting algorithm for structured tables. An article of mine in the German Wikipedia, which included especially this sorting, was deleted, because it "does not belong to the basic knowledge of a computer scientist".

		TI-30	ECO	RS		
1	-					
				DEG		
				135		
				Ĩ	ON/AC	
	TEXA	INSTRU		S. Sugar St.		
		DRG	10×	ex	CE/C	
	2nd	DRG	LOG	LN	CERC	
	HYP	SIN-1	COS-1	TAN	yx	
	HYP	FRQ	x	Oxn-1	Oxn	
	π	1/2	X2	VI		Service and
	Σ-	n	EX	EX2	PER	Sel and
	Σ+	EE	()		X	
	EXC	CSR	nCr	nPr		
	STO	(7)	8	9	R►.P	
	SUM	FLO	SCI	ENG		
	RCL	4	5	6	DMS► DD	
	d/c	X ³	%	X!	+	
-	a ^b /c	1	2	3	DD - DMS	
	Fard	xVe	FIX	+/-		
-	-	0	Ŀ	-1+		
1						
						-

7.7 Does the school calculator from Texas-Instruments calculate wrong?

The TI-30 ECO RS calculator shown on the left, which has been approved by German education ministries as a school pocket calculator, gives the following results for the task

2 hoch 2 hoch 3

64. Correct according to the rules of today's mathematical conventions, which can also be read in Wikipedia under operator order (right-associative), would be 256.

For hoch, however, you have to type the symbol $\boldsymbol{y}^{\boldsymbol{x}}$ there.

Now, of course, you can say that every company can calculate as it pleases. They do that, too. With the Windows calculator (mode normal), $1 + 2 \times 3$ also results in a wrong solution in the sense of school mathematics. Saxony-Anhalt may not have enough money to sue the

American tech giant Microsoft. But how can we prevent many students from losing their orientation because of this "diversity"?

As the picture above suggests, the calculator makes a very good impression. However, it behaves differently from what is taught in school in many other aspects and is also difficult to use, making it prone to errors even in simple tasks.

In mathematics, the "sine of 3.14" is usually written as follows:

sin(3,14)

In the mathematics textbook "Schlüssel zur Mathematik" (Sekundarstufe Sachsen-Anhalt Klasse 10 Cornelsen, ISBN 978-3-06-0044558-7) it says more regrettably:

"The function f(x) = sin x is called a sine function."

The Texas Instruments calculator does not accept the comma as a decimal number separator and you must first press 3.14 and then the sin key. At least Texas Instruments is consistent in typing at this point. The square root of 4 is also found by first typing the 4 and then the square root sign. As everyone expects, the result is 2. But 2 without the decimal point would also be conceivable? With 2+2, Texas Instruments also determines 4. and not 4, although everyone knows that the result of this addition is an integer. To prevent misunderstandings at this point: We do not criticize that this Texas Instruments calculator chooses the more user-friendly typing variant for single-digit operations, but that curriculum and school practice differ substantially here.

Designations on the keyboard are also surprising.

Σ+ (EE, RCL, STO, ...).

Many people are already familiar with the M+ symbol - add to memory - due to predecessor computers. Is innovation to be feigned here?

In this context, it is also interesting to note that pocket calculators already existed in the 1970s whose range of functions was perfectly adequate for use in mathematics lessons and for a large number of applications, especially in the scientific and technical fields.

These calculators were characterized by a clear keyboard layout that did without multiple key assignments. The calculator architecture consistently implemented left-to-right arithmetic, and it was possible to dispense with bracket levels. The range of functions was limited to the necessary and frequently used functions. This minimized problems arising from different designs and ensured simple and intuitive operation.

One example is the scientific calculator shown in the figure, developed and produced in Japan in 1975.

From o++o point of view, however, the TI-30 ECO RS behaves correctly for the most part in these problems. For example, with 2 to the power of 3 to the power of 4, it chooses the way of calculating that the majority of people prefer, namely to calculate from left to right. This is also true for engineers, as I experienced many times. That one-digit functions are typed after the number (the argument), we also welcome, because this way of calculation also follows the principle from-left-to-right:

3.14 sin cos

The calculator from Texas-Instruments first calculates the sine and applies the cosine function to the result. This is not taught in math classes, but it is also easier to understand. Unfortunately, the calculator is not completely consistent at this point. At $1 + 2 \times 3$, it no longer calculates from-left-to-right. Now it calculates as Descartes supposedly wanted it to. Only so that one could write a polynomial somewhat more elegantly, humans gave up the general principle from-left-to-right to calculate. Since one can regard today also a list of numbers as input value, this argumentation from the 17-th century has no more right to exist from our view. Instead of

X³ + 2 * X² + 3 * X +4

we can today briefly and succinctly X poly 1 2 3 4 type.

In general, we also estimate that all of today's calculators are morally worn out. They should no longer be used at school at all. The first electronic, actually palm-sized calculator was developed as early as 1967 and had - as is still common today - a **very small display**. Since cell phones with much larger displays exist today in 2023 and we also know much more powerful apps with a much wider range of applications, calculators should generally be banned from school today or displayed in the school museum.

Let's consider a very simple problem. You want to add 10 numbers with the Texas Instruments calculator. At the end of the calculation, when you realize that the result cannot be correct, you cannot look at the input again. They have to type in all the numbers again. It is unclear whether they do this correctly if all these numbers consist of 10 digits.

Let's continue by looking at the % key. If you play with the calculator and type for example

10 %

the result is 0.1.

So you might suspect that the percent key is just mislabeled, and it just divides by 100. The percent key is also hard to type on this calculator, since you have to type 2nd beforehand. Also, once you find the little blue percent sign, which doesn't have its own key, you have to concentrate very hard to see if you should press the key above or below it. These are, of course, potential sources of error. Of course, you also have to know whether the 2nd key is only valid for the next operation or until I press it again. If one then types for example

10 + 10 %

If you press = , you first get 1. Only when you press = further does the current user get the number 11 that he probably wants.

But if you think mathematically, only one of the following two solutions comes into question:

10 + (10 %)

or

(10 + 10) %

You get 10.1 in the first case and 0.2 in the second.

That is, with this symbol mathematical thinking is contradicted. How should one understand

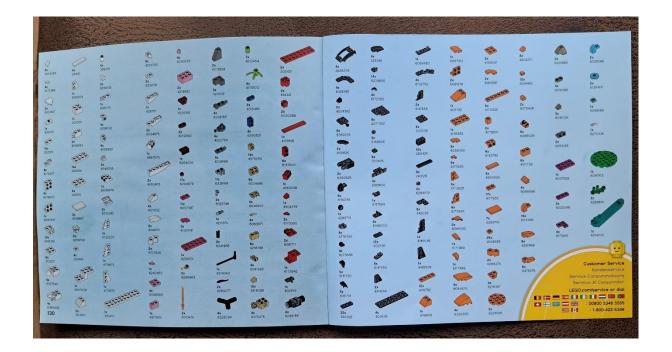
10 + 10 %

differently as a term? Why do all students need to learn a term definition if it is not applied in calculator practice at school?

To our knowledge, there is only one programming language that uses this symbol at all in connection with percentage calculation. Here, however, +% is used as a two-digit operation symbol. This also makes it mathematically clear and clean.

Just as the three letters of sin represent an operation symbol, +% is also an operation.

In o++o results in 10 +% 10 11..


If you type in the Texas Instruments calculator

10 sin x²

so you never see on the display which operation symbol you have just typed or typed before. Furthermore, the keyboard labels make it difficult to understand the "dot before dash" rule when the multiplication sign consists of 2 dashes and the division sign contains a dash. We conclude the section with what appears to be a very simple multiple addition. We think that hardly anyone can correctly manage an addition of very many numbers with a calculator.

Sophia has built a tiger out of Lego bricks. At the end of the description of the construction set, all the types of bricks used are listed with the number of bricks used. Grandpa wants to know how many Lego bricks the tiger is made of?

Program 7.7.1: Sum of many numbers
8 4 2 1 15 8 4 1 10 6 6 4
,4 1 1 2 14 4 2 2 4 1 2
,421442121111
,621212422141
,4 2 1 2 1 17 11 3 1 2 2
,2344411212124
,7 4 2 4 14 6 5 4 6 4 12 4
,222161122112
,4 4 2 6 2 2 6 1 4 4 5 5 22
,4 14 4 8 5 8 4 1 6 12 6 2 4
,1 4 2 4 10 6 2 8 1 1 12 1
,1 2 1 1 8 6 6 6 2 1 1 4 4
,2 2 6 2 6 4 17 7 26 2 4 2
,8 12 2 6 6 4 16 8 6
,2 4 3 2 1 2 4
,2211121
++
Result:
755

The above program consists of a tuple of 16 lists of numbers. This is certainly more advantageous than typing a single list or tuple. In the latter case, one would have to type commas instead of the many spaces that are easy to type, which would certainly not be an advantage.

Since people often make typing errors or type one key too many or too few, the question remains: Is the result correct?

There is no sample of nine for addition. Here some possibilities for samples shall be presented. One could first check if the number of numbers in the program is correct.

Program 7.7.2: How many numbers does each list contain?
8 4 2 1 15 8 4 1 10 6 6 4
,4 1 1 2 14 4 2 2 4 1 2
,4 2 1 4 4 2 1 2 1 1 1 1
,621212422141
,4 2 1 2 1 17 11 3 1 2 2
,2 3 4 4 4 11 2 1 2 1 2 4
,7 4 2 4 14 6 5 4 6 4 12 4
,2 2 2 1 6 1 1 2 2 1 1 2
,4 4 2 6 2 2 6 1 4 4 5 5 22
,4 14 4 8 5 8 4 1 6 12 6 2 4
,1 4 2 4 10 6 2 8 1 1 12 1
,1 2 1 1 8 6 6 6 2 1 1 4 4

```
,2 2 6 2 6 4 17 7 26 2 4 2
,8 12 2 6 6 4 16 8 6
,2 4 3 2 1 2 4
,2 2 1 1 1 2 1
++1
Result (tab):
12 11 12 12 11 12 12 13 13 12 13 12 9 7 7
```

Counting the numbers of elements of several short lists is certainly easier than counting the total number. It could also be that large numbers arise when typing if a space is forgotten:

Program 7.7.3 : Select larger numbers to check their existence in the lego list.
8 4 2 1 15 8 4 1 10 6 6 4
,4 1 1 2 14 4 2 2 4 1 2
,4 2 1 4 4 2 1 2 1 1 1 1
,6 2 1 2 1 2 4 2 2 1 4 1
,4 2 1 2 1 17 11 3 1 2 2
,2 3 4 4 4 11 2 1 2 1 2 4
,7 4 2 4 14 6 5 4 6 4 12 4
,2 2 2 1 6 1 1 2 2 1 1 2
,4 4 2 6 2 2 6 1 4 4 5 5 22
,4 14 4 8 5 8 4 1 6 12 6 2 4
,1 4 2 4 10 6 2 8 1 1 12 1
,1211866621144
,2 2 6 2 6 4 17 7 26 2 4 2
,8 12 2 6 6 4 16 8 6
,2432124
,2211121
avec ZAHL>9
Result (tab)
ZAHLI,
15 14 17 11 14 22 14 10 17 12 10 11 12 12 12 26 16

Since each list is of type ZAHLI, the multi-digit numbers are filtered out in each list, which can then be checked again.

Furthermore, you can calculate the sum of each list and discard any that appear to be incorrect. **Program 7.7.4**: Calculate the sum for each list.

-0
8 4 2 1 15 8 4 1 10 6 6 4
,4 1 1 2 14 4 2 2 4 1 2
,4 2 1 4 4 2 1 2 1 1 1 1
,621212422141
,4 2 1 2 1 17 11 3 1 2 2
,2344411212124
,7 4 2 4 14 6 5 4 6 4 12 4
,2 2 2 1 6 1 1 2 2 1 1 2
,4 4 2 6 2 2 6 1 4 4 5 5 22
,4 14 4 8 5 8 4 1 6 12 6 2 4

,1 4 2 4 10 6 2 8 1 1 12 1
,1 2 1 1 8 6 6 6 2 1 1 4 4
,2 2 6 2 6 4 17 7 26 2 4 2
,8 12 2 6 6 4 16 8 6
,2 4 3 2 1 2 4
,2 2 1 1 1 2 1
add ZAHL tup ++
ultimo
Result (tab)
ZAHL1,
69 37 24 28 46 40 72 23 67 78 52 43 80 68 18 10

In the standard representation of a list, the elements are arranged one below the other (vertically). Only single-column lists are often represented horizontally to make better use of the screen. Thus, the above lists are also considered logically vertical, which is why add must be applied and not an assignment.

7.8 Is EXCEL morally worn out?

Program 7.8.1: An o++o program for which EXCEL needs more than six worksheets!							
<tab!< th=""><th></th><th></th><th></th><th></th></tab!<>							
NAME,	LENGTH,	, (AGE	,WEIGHT	m)m			
Klaus	1.68	18	61				
		30	65				
		61	80				
Rolf	1.78	40	72				
Kathi	1.70	18	55				
		40					
Walleri	1.00	3	16				
Victoria	1.61	13	51				
Bert	1.72	18	66				
		30	70				
!TAB>							
avec NAME! AGE>20							
<pre>gib BMI,(AGE,BMI,(NAME,BMI m) m) BMI:=WEIGHT:LENGTH:LENGTH!++:</pre>							
rnd 2							

If you realize this o++o program in EXCEL you need more than 6 worksheets. Hardly anyone overlooks these EXCEL sheets, which is why they are very difficult to change. More details can be found under o++o versus EXCEL. Spreadsheet programs have several advantages and are widely used, but they also have a number of disadvantages, which we will list:

- 1. Data and formulas are mixed. For this reason, and because an EXCEL worksheet can contain hundreds or even thousands of formulas, it is almost impossible to check the correctness of the programs or to adapt them to changes.
- 2. EXCEL does not know schemas for structured tables: e.g. SUBJECT, MARKI I describes a structured schema here a list of subjects is described, and for each subject there is also a list of marks.
- 3. EXCEL can display structured tables visually, but it cannot sort them directly or process them reasonably.
- 4. You cannot use EXCEL to query databases, XML or Wikipedia. For that you would still have to learn SQL, XQuery or better o++o.
- 5. EXCEL formulas are relatively cryptic because, for example, they often contain individual cell designations. For example, the sum over a column is written in EXCEL in the form:

=SUM(F12:F75)

- 6. A single EXCEL formula can require more analysis than a complete o++o program.
- 7. EXCEL contains only a few mathematical concepts and therefore requires an excessive amount of detailed knowledge.
- 8. EXCEL offers the decimal point to German and other users. However, this makes it difficult to exchange corresponding worksheets of international companies across country borders, since many countries prefer the decimal point.
- 9. Since data and programs are usually separated in o++o, the data can be used by several programs without any problems. This is more difficult with EXCEL.
- 10. For aggregations (sums, averages, maxima, ...) per value you have in general to presort or group in EXCEL but not in o++o.
- 11. In EXCEL, you have to write each number in a separate cell. This could quickly overwhelm a smartphone screen.
- 12. o++o is based on an abstract tabment concept for data. A tabment can already be represented in many ways by default: web tab xml image column ... and also compact (hsq). With CSS, the output of o++o can be formatted almost arbitrarily. EXCEL, on the other hand, is based on a concrete print image. This makes it easier to create simple applications at first, but it is rather a disadvantage for the complexity of today's applications.
- 13. After studying the above criticisms of EXCEL, a VW engineer remarked: At VW, EXCEL can be used by any employee at will. As a rule, however, it is only simple tables that are to be made "nice". Sometimes a few simple arithmetic operations are necessary. Comprehensive, complex applications do not take place in EXCEL.

EXCEL does not know mass data operations and could be morally worn out for this reason alone. Therefore I plead for removing EXCEL programs also from school lessons and replacing them by more powerful and promising concepts and systems.

7.9 o++o Proofs

Proofs have played a minor role in school and even outside the world of professional mathematicians. Yet everyone wants to have confidence in a calculation, a system, or a calculator. When confronted with a new type of calculator or system, everyone first tries to solve problems like 2 times 3. Who suspects further problems, tests e.g. 1 plus 2 times 3.

The highly respected German economist Professor Sinn says in his lecture **Energiewende ins Nichts** (see youtube) that calculations only really make sense if you can understand them. To do this, you have to understand all the sub-steps in detail.

We have been working on this requirement of Prof. Sinn for decades. The SQL designers had formulated this requirement somewhat differently at the beginning of their development:

SQL should become an end-user language.

It follows directly that the average consumer should be able to understand SQL programs. Today, however, almost all SQL programmers come from the computer science corner.

The importance of statistics in schools is increasing.

How to teach a student a new statistical function, such as the average ++: or the function mad of o++o. If you simply apply the function to several lists of numbers and look at the result, you usually cannot understand its meaning. However, if the teacher knows that the students have already understood the functions ++ (sum) and ++1 (count), this is no longer so difficult.

```
Program 7.9.1: Preparation of an o++o proof for the ++: operation..
X1:= 3 5 4 2 1
SUM:=X1 ++
CNT:=X1 ++1
MYAVG:=SUM:CNT
OTTOAVG:=X1++:
Result (ment)
```

<tabm></tabm>
<sum>15</sum>
<count>5</count>
<average>3.</average>
<ottoavg>3.</ottoavg>
<x>3</x>
<x>5</x>
<x>4</x>
<x>2</x>
<x>1</x>

Despite this (docu)ment output, it is clear that the two average values match. Here the ment output agrees almost completely with the xml output. The columns MYAVG and OTTOAVG must however agree with all other input lists. The program has the advantage of being very simple. But the student still has to enter a lot of data. Using the example of o++o-mad, which has not yet played a big role in Germany, we want to show that an extended o++o program can relieve us of much of the typing work. This mad function is one of the simplest and clearest statistical functions, but it has not so nice mathematical properties. Now we assume knowledge of the operations ++:, ..x and abs. By from ..x to!nr a list of nr random numbers between from and to is generated. abs calculates the absolute value.

Program 7.9.2: o++o Proof for the ++: Operation.							
RANDOMNR1:= 1 x 10!10							
X1:= 1 X RANDOMNR!RANDOMNR							
AVG:=X1 ++:							
DISTANCE:=AVG - X abs							
MYMAD:=DISTANCE1 ++:							
OTTOMAD:=X1 mad							
gib AVG, MYMAD, OTTOMAD 1							
Result (tab)							
AVG,	MYMAD,	OTTOMAD					
2.8	1.44	1.44					
4.16666666667	1.5	1.5					
1.333333333333	0.44444444444	0.44444444444					
1.5	0.5	0.5					
5.	2.8	2.8					
1.	0.	0.					
3.	1.6	1.6					
1.	0.	0.					
1.	0.	0.					
1.	0.	0.					

We can easily extend the result table to a thousand output rows table by replacing the last number 10 of the first row with 1000. We have extracted only the relevant columns with the gib statement.

7.10 An example of deep digitization

Perhaps the following example makes the concept of deep digitization (TD) a little clearer: If addition, multiplication, **were not** taught in school, today, for example, you would need different apps to solve the following two problems.

An analogy to deep digitization from the field of "single data" operations

- 1. I have received a load of 36.57 tons of bulk material and will receive 31 more loads of this type. How much bulk will I have in total?
- **2.** I have a rectangular plot of land 32 m wide and 36.57 m long. What is the size of my plot?

Everyone who has understood multiplication knows that it is one and the same problem that can be solved very easily with a simple calculator. For today's digitization, this means that a TD could require far fewer computer applications than a FD (flat digitization) and that the end users (managers, politicians, ...) could master far more traditional applications (apps). After all, if the apps and applications are based on one (e.g. o++o) data model, one can of course also standardize the interfaces of these apps and such an application could replace many conventional FD applications.

8 Schemes and Structured Tables

All column names of a table are often considered as a schema of the table. Column names are necessary to understand corresponding column values correctly. If we consider structured tables, it is advantageous to enrich the column names with corresponding collection symbols; for example, I for list.

NAME,	BORNIN,	(DEED,	YEAR 1) 1
Otto the Great	Old Saxony(De)	Elected King of Germany	936
		The Hungarians defeated on the Lechfeld	955
		First emperor of the Holy Roman Empire	962
Otto von Moravia	Moravia	married Euphemia of Hungary	1086
Otto von Guericke	MD(De)	Inventor of the air pump	1649
		Hemisphere test for the emperor	1654
Otto von Bismarck	Preussen(De)	with carrot and stick policy	1871
		Ems Dispatch	1870
		First Chancellor of Germany	1871
Nicolaus Otto	Taunus (De)	Co-inventor of the gasoline engine	1876
OttoNormalVerbraucher	De	learns car driving	1960
		learns a programming language	2025

Tabment 8.1: ottos.tab

The above table (TABMENT=TABelle+dokuMENT) ottos.tab contains a list of 6 "persons" and for each person a repeating group (DEED, YEAR I) - a list of (DEED, YEAR) pairs. Here a person has 4 columns, but it is a triple (3-tuple). It is a structured tuple, struple for short (designation of Prof. Schek). The first two components are of type TEXT and the third component is a list of subtuples (pairs) (2-tuples). We will call the attribute values of a level segment. The NAME segment is the same as the BORNIN segment.

The first NAME segment is:

NAME,	BORNIN
Otto the Great	Old Saxony(De)

The first DEED segment of Otto the Great reads:

DEED,	YEAR
Elected King of Germany	936

The first person corresponds to the first struple; it is a NAME tuple (=BORNIN tuple):

NAME,	BORN,	(DEED,	YEAR 1)
Otto the Great	Old Saxony(De)	Elected King of Germany	936
		The Hungarians defeated on the Lechfeld	955
		First emperor of the Holy Roman Empire	962

Since the DEED tuples (= DEED sub-tuples) do not contain any other collections, a DEED segment is the same as a DEED tuple. If we were to represent the above table by an ordinary flat table, every (NAME, BORNIN) pair would have to appear in every row. That is, (Otto the Great, Old Saxony(De)) would have to appear 3 times (once for each DEED segment). Then, for example, it is not so easy to count the persons in the table. With the above table, the corresponding program looks like this:

Program 8.1: How many ottos are contained in the table ? (How many elements (struples) does		
the outermost collection contain?)		
ottos.tab		
++1		

Here and in the following, we use these abbreviations and keywords:

aus: from

++1: count

gib: (corresponds to the SELECT of SQL)

avec: with (French) (for selection)

sans: without (for selection)

:= : extension (extends the specified table by a new (complex) column)

m: set: contains different elements

b: Bag: an element may occur more than once

I: list: the order of the elements is important

The result of program 8.1 is a simple table:

ZAHL 6

The schema of this table does not contain a collection symbol because the table contains exactly one element. Similarly, we do not need a collection symbol in the following 2 queries. We do not want to explain the following queries in detail. We use the queries to illustrate what different types of tables there are and what schemas belong to them.

Program 8.2: How many persons and how many deeds are contained in the file ottos.tab?		
ottos.tab		
gib CNTPERSON, CNTDEED		
CNTPERSON:= NAME! ++1		
CNTDEED := DEED ! ++1		
Result (tab)		
CNTPERSON, CNTDEED		
6 12		

Program 8.3: Tell me the name of the person born in Saxony.
aus ottos.tab
avec Saxony in BORNIN
gib NAME
Result
NAME
Otto the Great

Program 8.4: Give me the name of a noble person.
aus ottos.tab
avec von in NAME
gib NAME
Result
NAME
Otto von Moravia

If keywords like "avec" and "in" are highlighted in color in the future o++o software, the second program line will also be easier to read.

Here it would be better to output the names of all the nobles:

Program 8.5: Sort all noble names		
aus ottos.tab		
avec von in NAME		
gib NAMEm		
Result (tab)		
NAME1		
Otto von Bismarck		
Otto von Guericke		
Otto von Moravia		

To save space on the screen or paper, we can also arrange the elements of a list or other collection horizontally:

Result (tabh)			
NAME1			
"Otto von Bisma	rck" "Otto von Gue	ricke" "Otto von Mo	ravia"

Program 8.6: Count all deeds and all deeds of each century. Add to each century the corresponding people.				
<pre>aus ottos.tab CENTURY:=YEAR div 100 +1 gib CNTDEED,(CENTURY,CNTDEED,NAMEm m) CNTDEED:= DEED ! ++1</pre>				
Result (Table with	3 segment	types: CNTDEED, (CENTURY, CNTDEED2) and NAME)		
CNTDEED,(CENT	URY, CNTDE	ED2,NAMEm m)		
12 10	3	Otto the Great		
11	1	Otto von Moravia		
17	2	Otto von Guericke		
19	4	Nicolaus Otto		
		Otto von Bismarck		
20	1	John Doe		
21	1	John Doe		

Program 8.7: Count all the acts and the acts of each century with corresponding persons, where for each act the corresponding person must appear (with duplicates).			
<pre>aus ottos.tab CENTURY:=YEAR div 100 +1 gib CNTDEED,(CENTURY,CNTDEED,NAMEb m) CNTDEED:= DEED ! ++1</pre>			
Result (ta	b)		
CNTDEED	,(CENT	URY,CNTDE	ED2, NAMEb m)
12	10	3	Otto the Great Otto the Great Otto the Great
	11	1	Otto von Moravia
	17	2	Otto von Guericke Otto von Guericke

19	4	Nicolaus Otto
		Otto von Bismarck
		Otto von Bismarck
		Otto von Bismarck
20	1	John Doe
21	1	John Doe

Where b stands for bag (multiset). So far we have considered only tables with nested levels. But a structured table may also contain "independent" collections:

NAME ,	RESIDENCE1,	WOMAN1,	RULESOVER1 1
Otto the Great	Magdeburg	Editha	Saxony
	Memleben	Adelheid	Thuringia
			Bavaria
			Franconia
			Swabia
			Italy
			Bohemia
			Holland
			Lorraine
			Friesland
Charles IV	Prague	Margaret	Bohemia
	Tangermünde	Anna	Silesia
		Anna	Brandenburg
		Elizabeth	Italy
			Hungary

Tabment 8.2: emperors.tab

In this table "Memleben" and "Otto the Great" are in the same relation to each other as "Adelheid" and "Otto the Great". But this does not mean that "Adelheid" and "Memleben" are related to each other although they are in the same row. Therefore the following restructuring is senseless.

Program 8.8: Query with empty result

aus emperors.tab

gib NAME, RESIDENCE, WIFE m

gib NAME, RESIDENCEm, WIFEm m is useful, however.

9 Tabment types (TTs) and structured documents

For structured tables and documents we use the name Tabment. Therefore we abbreviate the type of a tabment with TT (Tabment Type). The TT completes the information given by a schema. It specifies for each tag its schema. For example, the TT for the above table ottos.tab is:

```
TABMENT! OTTOS
OTTOS! NAME,BORNIN,(DEED,YEAR 1)1
NAME BORNIN DEED! TEXT
YEAR! ZAHL
```

TEXT and ZAHL (number) are elementary types that need no further explanation. Each named tabment is surrounded by a tag that is derived from the file name by omitting the type suffix. Therefore, our first table can also be presented in document style or in a document style with inner tables (ment or xml).

for example:

<ottos></ottos>
<name>Otto the Great</name>
<bornin>Altsaxony(De)</bornin>
<pre><deed>Elected King of Germany</deed>.</pre>
<year>936</year>
<pre><deed>Hungarians beaten on the Lechfeld</deed>.</pre>
<year>955</year>
<deed>First emperor of the Holy Roman Empire</deed>
<year>962</year>
<name>Otto von Moravia</name>
<bornin>Moravia</bornin>
<pre><deed>married Euphemia of Hungary</deed></pre>
<year>1086</year>
<name>Otto von Guericke</name>
<bornin>MD (De)</bornin>
<pre><deed>Inventor of the air pump</deed>.</pre>
<year>1649</year>
<pre><deed>Half ball attempt in front of the emperor</deed>.</pre>
<year>1654</year>
<name>Otto von Bismarck</name>
<bornin>Preussen(De)</bornin>
<at>with carrot and stick policy.</at>
<year>1871</year>
<pre><deed>Ems Dispatch</deed>.</pre>
<year>1870</year>
<at>First Chancellor of the Reich of Germany.</at>
<year>1871</year>
<name>Nicolaus Otto</name>
<bornin>Taunus (De)</bornin>
<pre><deed>Miter inventor of the gasoline engine</deed>.</pre>
<year>1876</year>
<name>Otto Normal Consumer</name>
<bornin>De</bornin>
<deed>learns to drive</deed>
<year>1960</year>
<pre><deed>learns a programming language</deed>.</pre>
<year>2025</year>

Tabment 9.1: Table ottos.tab in XML document style

```
"Otto the Great" Old Saxony(De)
```

Tabment 9.2: Table ottos.tab in hsq style

Let's look at parts of a small but real document: "Basic Law for the Federal Republic of Germany".

```
<META!
TABMENT ! BASICLAW
BASICLAW ! NR, TITLE, CONTENT 1
NR ! ONR
TITLE ! TEXT
CONTENT ! TEXT
!META>
<BASICLAW>
  <NR>1</NR>
  <TITLE>The Fundamental Rights</TITLE>
  <CONTENT></CONTENT>
  <NR>1.1</NR>
  <TITLE>Human Dignity - Human Rights - Binding of Fundamental Rights</TITLE>
  <CONTENT></CONTENT>
  <NR>1.1.1</NR>
  <TITLE></TITLE>
  <CONTENT>The dignity of the human being is inviolable. To respect and protect it is the obligation
of all state power.</CONTENT>
  <NR>1.1.2</NR>
  <TITLE></TITLE>
  <CONTENT>The German people therefore profess inviolable and inalienable human rights as the basis
of every human community, peace and justice in the world.</CONTENT>
  <NR>1.1.3</NR>
  <TITLE></TITLE>
  <CONTENT>The following fundamental rights bind legislation, executive power and jurisdiction as
directly applicable law.</CONTENT>
  <NR>1.2</NR>
  <TITLE>Personal Freedom</TITLE>
  <CONTENT></CONTENT>
  <NR>1.2.1</NR>
  <TITLE></TITLE>
  <CONTENT>Everyone has the right to the free development of his personality, insofar as he is
        does not infringe the rights of others and does not violate the constitutional order or the
        Moral law violates.</CONTENT>
  <NR>1.2.2</NR>
  <TITLE></TITLE>
  <CONTENT>Everyone has the right to life and ...</CONTENT>
  <NR>1.14</NR>
  <TITLE>Property Inheritance Expropriation</TITLE>
  <CONTENT></CONTENT>
  <NR>1.14.1</NR>
  <TITLE></TITLE>
  <CONTENT>The property and inheritance rights are guaranteed. The content and limits are
         determined by the laws.</CONTENT>
  <NR>1.14.2</NR>
  <TITLE></TITLE>
  <CONTENT>Ownership obliges. Its use shall at the same time be for the public good.
```

serve.</CONTENT> <NR>1.14.3</NR> <TITLE></TITLE> <CONTENT>Expropriation is permissible only for the public good. It may only be carried out by law or on the basis of a law regulating the type and extent of compensation. Compensation shall be paid after fair consideration of the interests of the general public and the to be determined by the parties involved. In the event of a dispute, the amount of compensation shall be determined by the Legal recourse before the ordinary courts open.</CONTENT> <NR>1.19</NR> <TITLE>Restriction of Fundamental Rights</TITLE> <CONTENT></CONTENT> <NR>1.19.1</NR> <TITLE></TITLE> <CONTENT>To the extent that under this foundation law a fundamental right is protected by law ..</CONTENT> <NR>2</NR> <TITLE>The Federal Government and the States</TITLE> <CONTENT></CONTENT> <NR>2.1</NR> <TITLE>Fundamentals of State Order, Right of Resistance</TITLE> <CONTENT></CONTENT> <NR>2.1.1</NR> <TITLE></TITLE> <CONTENT>The_Federal_Republic_of_Germany is a democratic and social federal state.</CONTENT> <NR>2.1.2</NR> <TITLE></TITLE> <CONTENT>All state power emanates from the people. It is exercised by the people in elections and votes ...</CONTENT> </BASICLAW>

Tabment 9.3: basiclaw1.ment

<META! TABMENT! BASICLAW **BASICLAW! CHAPTER1** CHAPTER! KNR, KTITLE, ARTICLE1 ARTICLE! ANR, ATITLE, (PNR, PARAGRAPH 1) KNR ANR PNR! ZAHL KTITLE ATITLE PARAGRAPH! TEXT !META> <BASICLAW> <CHAPTER> <KNR>1</KNR> <KTITLE>The Fundamental Rights</KTITLE> <ARTICLE> <ANR>1</ANR> <ATITLE>Human Dignity - Human Rights - Binding of Fundamental Rights</ATITLE> <PNR>1</PNR> <PARAGRAPH>The dignity of the human being is inviolable. To respect and protect it is the duty of all_state_authority.</PARAGRAPH> <PNR>2</PNR> <PARAGRAPH>The German people therefore profess inviolable and inalienable human rights as the basis of every human community, of peace and justice in the world.</PARAGRAPH> <PNR>3</PNR> <PARAGRAPH>The following fundamental rights bind legislation, executive power and jurisdiction as directly applicable law.</PARAGRAPH> </ARTICLE> <ARTTCLE> <ANR>2</ANR> <ATITLE>Personal Freedom</ATITLE> <PNR>1</PNR> <PARAGRAPH>Everyone has the right to the free development of his or her personality, insofar as he or she is does not violate the rights of others and does not violate the constitutional_order or the Moral Law Violates.</PARAGRAPH> <PNR>2</PNR> <PARAGRAPH>Everyone has the right to life and ...</PARAGRAPH> </ARTICLE> <ARTICLE> <ANR>14</ANR> <ATITLE>Property Inheritance Expropriation</ATITLE> <PNR>1</PNR> <PARAGRAPH>The property and inheritance rights are guaranteed. The content and limits are determined by the laws.</PARAGRAPH>

_	
	<pnr>2</pnr>
	<paragraph>Ownership obliges. Its use shall at the same time be for the public good.</paragraph>
	serve.
	<pnr>3</pnr>
	<paragraph>Eminent domain is permissible only for the public good. It may only be carried out</paragraph>
	by
	law or on the basis of a law regulating the type and extent of compensation.
	Compensation shall be paid after fair_consideration_of the interests of the general public
	and the
	to be determined by the parties involved. In the event of a dispute, the amount of
	compensation shall be determined by the
	legal courts open to the ordinary courts.
	<article></article>
	<anr>19</anr>
	<pre><atitle>Restriction of Fundamental Rights</atitle></pre>
	<pnr>1</pnr>
	<pre><paragraph>So far as under this foundation law a fundamental right is established by law</paragraph></pre>
	···
	<chapter></chapter>
	<knr>2</knr>
	<pre><ktitle>The Federal Government and the States</ktitle></pre>
	<article></article>
	<anr>20</anr>
	<pre><atitle>Fundamentals of State Order, Right of Resistance</atitle></pre>
	<pre><pnr>1</pnr></pre>
	<pre><paragraph>The Federal Republic of Germany is a democratic and social_Federal</paragraph></pre>
	State.
	<pre><pnr>2</pnr></pre>
	<pre><paragraph>All state power emanates from the people. It is exercised by the people in </paragraph></pre>
	elections_and_votes
	Tahmant Q 4 hasislaw2 mont

Tabment 9.4 basiclaw2.ment

basiclaw1.ment and basiclaw2.ment contain the same information, yet differ significantly in the way they are structured. The metadata of the second version is based on the designations of the original basic law. Here a structuring depth of 3 is present by the terms CHAPTER, ARTICLE and PARAGRAPH, which could be increased actually only by new names. The metadata from the first document, on the other hand, can be used for any structured documents. Although there are only 3 "column names" (NR, TITLE, CONTENT), the depth of "structuring" is unlimited.

Documents containing the "new line" character (return) are only conditionally suitable for tab and hsq outputs. Structured documents are usually output as ment or xml. For (NR,TITLE,CONTENT I) documents even the tabular web output is suitable. That the web output is advantageous for the comparison of both document types above, shall be demonstrated now.

```
Program 9.1: Output a document in the form of two different tables.basiclaw1.ment,basiclaw2.mentResult (web)
```

BASICL	W1		BASI	BASICLAW2					
NR	TITLE	CONTENT			ARTICLE1				
1	The Fundamental		1	The Fundamental		-	ITLE man Dignity	_	,PARAGRAPH 1) PARAGRAPH
	Rights Human Dignity - Human Rights - Binding of Fundamental Rights			Rights		- Ri Bi Fu	Human ghts - .nding of indamental .ghts	1	The dignity of the human being is inviolable. To respect and protect it is the duty of all_state_authority. The German people
1.1.1		The dignity of the human being is inviolable. To respect and protect it is the obligation of all state power. The German people						-	therefore profess inviolable and inalienable human rights as the basis of every human community, of peace
		therefore profess inviolable and inalienable human rights as the basis of every human community, peace and justice in the world.						3	and justice in the world. The following fundamental rights bind legislation, executive power and jurisdiction as directly applicable
1.1.3		The following fundamental rights bind legislation, executive power and jurisdiction as directly applicable law.			2		ersonal Peedom	<u> </u>	law. PARAGRAPH Everyone has the right to the free
1.2	Personal	10.							development of his or her personality,
1.2.1	Freedom	Everyone has the right to the free development of his personality, insofar as he is does not infringe the rights of others and does not violate the constitutional order or the Moral law violates.						2	<pre>insofar as he or she is does not violate the rights of others and does not violate the constitutional_order or the Moral Law Violates. Everyone has the right to life and</pre>
1.2.2		Everyone has the right to life and			14	Pr	operty	PNR	PARAGRAPH
1.14	Property Inheritance Expropriation					In	heritance propriation	1	The property and inheritance rights are guaranteed. The
1.14.1		The property and inheritance rights are guaranteed. The content and limits are determined by the laws.						2	content and limits are determined by the laws. Dwnership obliges. Its use shall at the
1.14.2		Ownership obliges. Its use shall at the same time be for the public good. serve.						3	same time be for the public good. serve. Eminent domain is permissible only for
1.14.3	Restriction	Expropriation is permissible only for the public good. It may only be carried out by law or on the basis of a law regulating the type and extent of compensation shall be paid after fair consideration of the interests of the general public and the to be determined by the parties involved. In the event of a dispute, the amount of compensation shall be determined by the Legal recourse before the ordinary courts open.			19	Re	striction		the public good. It may only be carried out by law or on the basis of a law regulating the type and extent of compensation. Compensation shall be paid after fair_consideration_of the interests of the general public and the to be determined by the parties involved. In the event of a dispute, the amount of compensation shall be determined by the legal courts open to the ordinary courts.
	of Fundamental					of		PNK	1 So far as
1.19.1	Rights The Federal	To the extent that under this_foundation_law a fundamental right is protected by law					ghts		under this foundation law a fundamental right is established by law
2	Government and the States		2	The Federal Government and the	ANR	_	ATITLE Fundamenta	- i	NR,PARAGRAPH 1) R PARAGRAPH
2.1	Fundamentals of State Order, Right			States			of State Order, Righ of Resistance	nt	1 The Federal Republic of Germany is a democratic and cocial Ecdenal
2.1.1	of Resistance	The_Federal_Republic_of Germany is a democratic and social federal state.							social_Federal State. 2 All state power emanates from the people. It is exercised by the
2.1.2		All state power emanates from the people. It is exercised by the people in elections and votes							exercised by the people in elections_and_votes

Program 9.2: Calculate for each chapter the number of paragraphs twice.							
aus basiclaw1.ment,basiclaw2.ment							
KNR1:=NR nthzahl 1 at NR							
PNR1:=NR nthzahl 3 leftat TITLE							
gib KNR1,PCNT1 m,(KNR,PCNT m)							
PCNT1:=PNR1!++1							
PCNT :=PNR !++1							
Result (tab)							
KNR1,PCNT1 l,(KNR,PCNT l)							
1 9 1 9							
2 2 2 2							

Program 9.3: Calculate twice the number of characters (letters) of each article.								
basiclaw1.ment,basiclaw2.ment								
ANR1:=NR nthzahl 1 text + "." + (NR nthzahl 2 text) onr								
gib ANR1,CNT1 m, (ANR,CNT2 m)								
CNT1 :=CONTENT zil ++1! ++								
CNT2 :=PARAGRAPH zil ++1! ++ # zil creates list of Zi (characters)								
Result (tab)								
ANR1, CNT1 l, (ANR, CNT2 l)								
1.1 366 1 367								
1.2 250 2 263								
1.14 672 14 667								
1.19 88 19 81								
2.1 171 20 171								

Program 9.4: Calculate the number of characters and words of each article.								
basiclaw1.ment								
ANR1:=NR nthzahl 1 text + "." + (NR nthzahl 2 text) onr								
gib ANR1,CNT1,CNT2 m								
CNT1 :=CONTENT zil ++1! ++								
CNT2 :=CONTENT cil ++1! ++ # cil generates list of ci (words)								
Result (tab)								
ANR1, CNT1, CNT2 1								
1.1 366 57								
1.2 250 41								
1.14 672 106								
1.19 88 13								
2.1 171 26								

Zi and Ci are Chinese words meaning character and word, respectively.

The example makes it clear that a teacher can easily count through the essays of a class in this way. We can further see that queries to documents are not very different from queries to tables, since documents can also be thought of as tables.

The functions described here could be useful for typical tasks of editorial offices or translation agencies, among others.

Program 9.5: Give me Article 2 of the Basic Law.

aus basiclaw1.ment
avec NR subtext 1!3="1.2"
gib TITLE,CONTENT 1

Result (ment):

Program 9.6: Find an entire section with a specific word in the title.

```
basiclaw1.ment
aus
avec expropriation in TITLE
gib
     NR
rename NR! NR0
L:=NR0 zil ++1
,basiclaw1.ment
avec NR subtext 1!L = NR0
gib NR, TITLE, CONTENT 1
Result (ment):
TABMENT ! TABM
TABM ! NR, TITLE, CONTENT 1
NR ! ONR
TITLE ! TEXT
CONTENT ! TEXT
<TABM>
  <NR>1.14</NR>
  <TITLE>Property Inheritance Expropriation</TITLE>
  <CONTENT></CONTENT>
  <NR>1.14.1</NR>
  <TITLE></TITLE>
  <CONTENT>The property and inheritance rights are guaranteed. The content and limits are
        determined by the laws.</CONTENT>
  <NR>1.14.2</NR>
  <TITLE></TITLE>
  <CONTENT>Ownership obliges. Its use shall at the same time be for the public good.
         serve.</CONTENT>
  <NR>1.14.3</NR>
  <TITLE></TITLE>
  <CONTENT>Expropriation is permissible only for the public good. It may only be carried out by
        law or on the basis of a law regulating the type and extent of compensation.
        Compensation shall be paid after fair consideration of the interests of the general public
and the
        to be determined by the parties involved. In the event of a dispute, the amount of
compensation shall be determined by the
        Legal recourse before the ordinary courts open.</CONTENT>
</TABM>
```

We consider another document with TT. It uses alternatives through (|). It comes from the XQuery use cases (C+07).

<META! TABMENT! REPORT1 **REPORT1! SECTION1** SECTION! TITLE, CONTENT CONTENT! TEXT NARCOSIS PREPARATION CUT ACTION OBSERVATION 1 PREPARATION! TEXT ACTION] CUT! TEXT | GEOGRAPHY | INSTRUMENT 1 ACTION! TEXT | INSTRUMENT 1 TITLE NARCOSIS OBSERVATION GEOGRAPHY INSTRUMENT! TEXT !META> <REPORT1> <SECTION> <TITLE>Procedure</TITLE> <CONTENT> The patient was taken to the operating room, where she was placed in the supine position and <NARCOSIS> induced under general anesthesia. </NARCOSIS> <PREPARATION> <ACTION>A Foley catheter was placed to decompress the bladder</ACTION> and the abdomen was then sterilely prepped and draped. </PREPARATION> <CUT> A curved incision was made <GEOGRAPHY> in the center line immediately infraumbilical </GEOGRAPHY> and the subcutaneous tissue was divided <INSTRUMENT> Use electrocautery. </INSTRUMENT> </CUT> The fascia was identified and <ACTION> # 2 0 Maxon seams were placed on each side of the centerline. </ACTION> <CUT> The fascia was shared with <INSTRUMENT> electrocautery </INSTRUMENT> and the peritoneum entered. </CUT> <OBSERVATION>The small intestine was identified.</OBSERVATION> and <ACTION> the <INSTRUMENT>Hasson trocar</INSTRUMENT> was placed under direct visualization. </ACTION> <ACTION>The <INSTRUMENT>Trocar</INSTRUMENT>using the Sutures was attached to the fascia. </ACTION> </CONTENT> </SECTION> </REPORT1>

Tabment 9.5: report1.ment

In report1.xml the CONTENT is a list of elements, where each element is either of type TEXT, ANESTESIA, PREPARATION, CUT, ACTION or OBSERVATION. In the above document, the first element is simple TEXT, the second is of type ANESTESIA, the third is of type PREPARATION, Since our report was tagged in the above way, the following example queries are possible.

For example:

Program 9.6: What instruments were used in the second cut?					
aus report1.ment					
gib CUT1					
avec CUT pos = 2					
gib INSTRUMENT1					
Result (tab)					
INSTRUMENT1					
electrocautery					

Program 9.7: What are the first two instruments used?ausreport1.mentgibINSTRUMENT1

avec INSTRUMENT pos < 3
Result (tab)
INSTRUMENT1
Use electrocautery.
electrocautery

10 A university database

We consider a non-relational database consisting of one flat and two structured tables:

FACS! FAC, DEAN, BUDGET, STUDCAPACITY m
STUDENTS! STID, NAME, LOCATION?, STIP, FAC, (COURSE, MARK m), (PROJ, HOURS m) m
COURSES! COURSE, TEACHER, (ISBN, TITLE m)m

The underlined column names are keys. The last two tables can be represented by the following 5 flat relations:

student1: STID,NAME,LOCATION?,STIP,FAC m
exam1: STID,COURSE,MARK m
projects1: STID,PROJ,HOURS m
course1: COURSE,TEACHER m
course_books1: COURSE,ISBN,TITLE m

FAC,	DEAN,	BUDGET,	STUDCAPACITY	m
Art	Sitte	2'000	600	
Infor	Reichel	10'000	500	
Math	Dassow	1'000	200	
Philo	Hegel	1'000	10	
Sport	Streich	8'000	150	

Tabment 10.1: facs.tab

STID,NAME,	LOC?,	STIP	,FAC,	(COURSE,	MARK	m),(PROJ, H	IOURS	m)m
1111 Ernst	0ehna	500	Math	Algebra	1	Fritz	4	
				Logic	2	Otto	2	
				History	1			
2222 Sophia	Berlin	400	Infor	Algebra	3	Ghandi	5	
				Databases	1	Ming	4	
				Otto	1	Otto	6	
3333 Clara	0ehna	450	Infor	Databases	1			
				OCaml	2			
4444 Ulrike		400	Art			Monet	10	
5555 Käthe	Gerwisch	600	Art	Repin	1	Monet	20	
				Apel	1			
6666 Claudia	Berlin	600	Sport	Psycho	2	Matthes	8	
				Ski	1	Witt	12	

Tabment 10.2: students.tab

COURSE,	TEACHER,	(ISBN,	TITLE m)m
Algebra	Reichel	0138-3019	Structural Induction on Partial Alg.
		3-8244-2099-6	Structured tables
Databases	s Saake	0-321-31256-2	Database Systems an Application
		0-7167-8069-0	Principles of Database Systems
Otto	Benecke	0-7167-8069-0	Principles of Database Systems
		3-8244-2099-6	Structured tables

Tabment 10.3: courses.tab

STID,	,NAME,	LOC?,	STIP,	,FAC m
1111	Ernst	0ehna	500	Math
2222	Sophia	Berlin	400	Infor
3333	Clara	0ehna	450	Infor
4444	Ulrike		400	Art
5555	Käthe	Gerwisch	600	Art
6666	Claudia	Berlin	600	Sport

Tabment 10.4: students1.tab

STID,	,COURSE, N	MARK	m
1111	Algebra	1	
1111	History	1	
1111	Logic	2	
2222	Algebra	3	
2222	Databases	s 1	
2222	Otto	1	
3333	Databases	s 1	
3333	OCaml	2	
5555	Apel	1	
5555	Repin	1	
6666	Psycho	2	
6666	Ski	1	

Tabment 10.5: examen1.tab

STID, PROJ,	HOURS	m
1111 Fritz	4	
1111 Otto	2	
2222 Ghandi	5	
2222 Ming	4	
2222 Otto	6	
4444 Monet	10	
5555 Monet	20	
6666 Matthes	5 8	
6666 Witt	12	

Tabment 10.6: projects1.tab

The above tables and the following programs refer to tab files, although we keep in mind that the specified tables could be database tables.

10.1 Selection (avec sans)

A condition specifies tuples or subtuples. In an avec clause the specified tuples form the result, in a sans clause the specified tuples are omitted.

Consequently, the schema and the TT of the considered tabment are not changed by a selection. Column names or tags are written in upper case in an o++o program. They must start with a letter or the character "_". A WORT (word) that is not enclosed by "-symbols must therefore use a lowercase letter. TEXT may contain spaces; however, they must then be enclosed in "-symbols.

Program 10.1.1: Find all students from Berlin and Oehna with bad results							
aus students.tab	aus students.tab						
avec LOC in "Berlin Oehna" # selected stud	dents						
avec MARK > 2 # selects exams and students	s						
Result (tab)							
STID,NAME , LOC? ,STIP,FAC ,(COURSE ,MAR	STID,NAME, LOC?, STIP,FAC, (COURSE, MARK m), (PROJ, HOURS m) m						
2222 Sophia Berlin 400 Infor Algebra 3 Ghandi 5							
	Ming 4						
Otto 6							
Intermediate result after the first condition							
1111 Ernst Oehna 500 Math Algebra	1 Fritz 4						
History	1 Otto 2						
Logic	2						
2222 Sophia Berlin 400 Infor Algebra	3 Ghandi 5						

				Databases	1	Ming	4
				Otto	1	Otto	6
3333 Clara	0ehna	450	Infor	Databases	1		
				OCaml	2		
6666 Claudia	Berlin	600	Sport	Psycho	2	Matthes	8
				Ski	1	Witt	12

The second "condition" is applied to the result of the first condition. The second "condition" is an abbreviation for the following two conditions:

```
avec STID! MARK>2 # Selection STID tuple (MARK>2 must exist)
avec COURSE! MARK>2 # Selection COURSE tuple
```

The first of these two conditions expresses that we select (complete) student tuples for which there exists a (COURSE,MARK) subtuple with a grade of 3 or higher. We do not write the existence quantifier because there is exactly one EXIST quantifier behind each condition. "#" is the comment symbol. It can be used to describe the meaning of a program step. Also, lines can be commented out to indicate intermediate results.

Program 10.1.2: For all students from Oehna and Berlin, indicate all results with 3 or worse.
aus students.tab
avec LOC in "Berlin Oehna" # equivalent: LOC in Berlin Oehna
avec COURSE! MARK>2 # selects exams and not students
gib NAME,LOC,(COURSE,MARK m) b
Result (tab)
NAME , LOC , (COURSE, MARK m) b
Clara Oehna
Claudia Berlin
Ernst Oehna
Sophia Berlin Algebra 3

After applying the two conditions, the restructuring (see section 10.3) was applied. Therefore, the scheme of the result has changed and the data has been sorted.

Program 10.1.3: Find all students from Oehna and Berlin with a grade of 3 or worse, with all
scores.

aus students.tab avec LOC in "Berlin Oehna" avec STID! MARK>2 # selects only students and not exams gib NAME,LOC,(COURSE,MARK m)b Result(tab) NAME,LOC, (COURSE, MARK m) b Sophia Berlin Algebra 3 Databases 1	
<pre>avec STID! MARK>2 # selects only students and not exams gib NAME,LOC,(COURSE,MARK m)b Result(tab) NAME,LOC, (COURSE, MARK m) b Sophia Berlin Algebra 3 Databases 1</pre>	aus students.tab
gib NAME,LOC,(COURSE,MARK m)b Result(tab) NAME,LOC, (COURSE, MARK m) b Sophia Berlin Algebra 3 Databases 1	avec LOC in "Berlin Oehna"
Result (tab) NAME , LOC , (COURSE, MARK m) b Sophia Berlin Algebra 3 Databases 1	avec STID! MARK>2 # selects only students and not exams
NAME, LOC, (COURSE, MARK m) b Sophia Berlin Algebra 3 Databases 1	gib NAME,LOC,(COURSE,MARK m)b
Sophia Berlin Algebra 3 Databases 1	Result (tab)
Databases 1	NAME, LOC, (COURSE, MARK m) b
	Sophia Berlin Algebra 3
	Databases 1
	Otto 1

Program 10.1.4: Find all students who have only a grade of 1 and at least one grade of 1					
aus students.tab					
<pre>avec NOTEm = {1} # { } are set brackets</pre>					
Result (tab)					

STID,NAME ,	LOC?	,STIP	, FAC	,(COURSE	,MARK	m),(PROJ	,HOURS	m) m
5555 Käthe	Gerwisch	600	Art	Apel	1	Monet	20	
				Repin	1			

For the evaluation of the condition, for each student the list of his grades is transformed into a set. Thus, Ernst's set $\{1 \ 2 \ 1\} = \{1 \ 2\}$ and Kathe's set $\{1 \ 1\}$ is equal to $\{1\}$. Two sets are equal if every element of the left side is also on the right side and every element of the right side is on the left side. In other words, two sets M1 and M2 are equal if 'M1 inmath M2 & M2 inmath M1' holds. If we want to have all students with exactly two marks 1, then we can use multisets: MARKb = $\{\{1 \ 1\}\}$ (b abbreviates Bag). If the order of the notes is also important, then we can take lists: MARKI = $[1 \ 2 \ 1]$, ...

Program 10.1.5: Find all students who got an 1 in the algebra course
aus students.tab
avec STID! COURSE=Algebra & MARK=1
gib STID,NAME,(COURSE,MARK m)m
Result (tab)
STID,NAME ,(COURSE, MARK m) m
1111 Ernst Algebra 1
History 1
Logic 2

Program 10.1.6: Find all stud in the same course)	ents who have taken an algebra course and have an 1 (not necessarily
aus students.tab avec STID! COURSE=Alg avec STID! MARK=1 gib STID,NAME,(COURS Result(tab)	
STID,NAME , (COURSE ,	MARK m) m
1111 Ernst Algebra History Logic 2222 Sophia Algebra Database Otto	1 1 2 3 5 1 1

Program 10.1.7: Find all students who already have example	xams in Algebra and Databases
aus students.tab	
avec STID! COURSE=Algebra	
U	
avec STID! COURSE=Databases	
<pre># avec Algebra Databases in COURSEm is ed</pre>	equivalent to both selections
Result (tab)	
STID,NAME, LOC?, STIP,FAC, (COURSE,	MARK m),(PROJ , HOURS m) m
2222 Sophia Berlin 400 Infor Algebra	3 Ghandi 5
Databases	es 1 Ming 4
Otto	1 Otto 6
Intermediate result after the first condition	
1111 Ernst Oehna 500 Math Algebra	1 Fritz 4

		History	1	0tto	2
		Logic	2		
2222 Sophia Berlin 400	Infor	Algebra	3	Ghandi	5
		Databases	1	Ming	4
		Otto	1	0tto	6

If we would connect both conditions by & (and), this condition "contains" only one EXIST quantifier, of the kind that no subtuple exists that satisfies both subconditions simultaneously. The result would be empty in any case.

Program 10.1.8: For each student who has completed Algebra, indicate all other courses they have								
completed.								
aus students.tab								
avec STID! COURSE=Algebra # selects students								
sans COURSE! COURSE=Algebra # chooses exam								
gib NAME,COURSEb m								
Result (tabh)								
NAME, COURSED m								
Ernst History Logic								
Sophia Databases Otto								

Program 10.1.9: Find all students in which	n the word Otte	o occurs		
aus students.tab				
avec Otto				
Result (tab)				
STID,NAME , LOC? ,STIP,FAC ,	(COURSE ,M/	ARK m),	(PROJ ,	HOURS m) m
1111 Ernst Oehna 500 Math	Algebra	1	Fritz	4
	History	1	Otto	2
	Logic	2		
2222 Sophia Berlin 400 Infor	Algebra	3	Ghandi	5
	Databases	1	Ming	4
	Otto	1	Otto	6

Program 10.1.10: Print from all tuples of the university database (to which I have access) the tuples containing the word Apel.
aus students.tab,courses.tab avec Apel
Result (xml)
<tabm></tabm>
<students></students>
<stid>5555</stid>
<name>Käthe</name>
<place>Gerwisch</place>
<stip>600</stip>
<fac>Art</fac>
<course>Apel</course> .
<mark>1</mark>
<course>Repin</course>
<mark>1</mark>

```
<PROJ>Monet</PROJ>
<HOURS>20</HOURS>
</STUDENTS>
<COURSES/>
</TABM>
```

So far in this section we have only considered "selection by content", but almost the same importance has "selection by position". This is not only useful for lists, but can also be used in the context of "relational applications". We only consider two examples here.

```
Program 10.1.11: Give for each student from Oehna with exams, the last exam.
aus students.tab
avec LOC=Oehna
avec MARK pos- = 1
gib STID,NAME,(COURSE,MARK m)m
Result(tab)
STID,NAME,(COURSE,MARK m) m
1111 Ernst Logic 2
3333 Clara OCaml 2
```

The pos (pos-) function returns the position number (position number backwards) of the (sub-) item in the corresponding set. Therefore, MARK pos is the same as COURSE pos.

Program 10.1.12: Give t	the 2 b	est exams for the 3 best students. We omit Ulrike because we
cannot calculate an ave	rage fo	or her. She has no grades yet.
aus students.tab		
sans NAME=Ulrike		
avec MARK=MARK		
gib AVGM,NAME,FAG	2 , (MA	RK,COURSE m)m
AVGM:= MARK!	++:	
avec NAME pos < 4		
avec MARK pos < 3		
rnd 2		
Result (tab)		
AVGM,NAME ,FAC ,	(MAR	K,COURSE m) m
1.00 Käthe Art	1	Apel
	1	Repin
1.33 Ernst Math	1	Algebra
	1	History
1.50 Clara Infor	1	Databases
	2	OCaml

Here it is sufficient to know that by the gib clause the students are sorted by AVGM, the exams are sorted by MARK and AVGM is the average for each student. The gib clause is explained in more detail in section 10.3.

Although the following query does not require *avec* or *sans*, *primo* and *ultimo* are still selections. *ultimo* selects the last element from each collection. These operations can be used to quickly get a first impression of the structure and content of a tab.

```
      Program 10.1.13: Find the last element of each collection of the student file.

      students.tab ultimo

      Result (tab)
```

STID	,NAME	,LOC?	,STIP	,FAC	,(COURSE	,MARK	m),(PROJ	,HOURS	m) m	
6666	Claudia	a Berlin	n 600	Spor	rt Ski	1	Witt	12		

Program 2	10.1.14	1: Find the	e students	with	the high	est scho	olarship	S.			
aus stu	dents	.tab									
STIPMAX	:=STI	Pl max	# a new	colu	ımn wit	th a v	alue :	is created			
avec ST	IP=ST	IPMAX									
Result (ta	b)										
STIPMAX ,	(STID	,NAME	,LOC?	,STIP	,FAC ,	(COURSE	,MARK	m),(PROJ	,HOURS	m) m)	
600	5555	Käthe	Gerwisch	600	Art	Apel	1	Monet	20		
						Repin	1				
	6666	Claudia	Berlin	600	Sport	Psycho	2	Matthes	58		
						Ski	1	Witt	12		

10.2 Calculations (:=)

Program 10.2.1: Calculate the gross values of several prices.
3.18 55.88 17.90 * 1.19
Result (hsqh and tabh)
PZAHL1
3.7842 66.4972 21.301

Program 10.2.2: Calculate the gross values of several prices and leave the entered values in the
output.
NET1:=3.18 55.88 17.90
GROSS:=NET*1.19
Result (tab)
NET, GROSS 1
3.18 3.7842
55.88 66.4972
17.9 21.301

Program 10.2.3: Calculate the gross values of several prices.
3.18 55.88 17.90 +% 19
Result (tabh)
PZAHL1
3.7842 66.4972 21.301

Program 10.2.4: Convert all net prices of a small table into gross prices..

<iab!< th=""><th></th><th></th></iab!<>		
ARTICLE,	PRICE	1
OttoRAMDB	500	
OttoWiki	10	
OttoCalc	20	
!TAB>		
+% 19		
Result		

ARTICLE , PRICE 1 OttoRAMDB 595. OttoWiki 11.9 OttoCalc 23.8

19% is added to each value in the table. Text values are not changed by arithmetic operations with numbers.

Program 10.2.5: Calculate the gross value of each item and the sum of all gross values.
<tab!< td=""></tab!<>
ARTICLE, PRICE,CNT m
OttoRAMDB 500 20
OttoWiki 10 200
OttoCalc 20 4000
!TAB>
TOTAL:=PRICE*CNT +% 19
TOTALSUM:=TOTAL1 ++
Result
TOTALSUM, (ARTICLE , PRICE, CNT, TOTAL m)
109480. OttoCalc 20 4000 95200.
OttoRAMDB 500 20 11900.
OttoWiki 10 200 2380.

Program 10.2.6: Report each computer science student's	stipend in dollars
aus students.tab	
avec FAC=Infor	
DOL:=STIP*1.02	
Result	
STID,NAME, LOC?, STIP,FAC, DOL, (COURSE	, MARK m),(PROJ , HOURS m) m
2222 Sophia Berlin 400 Infor 408. Algebra	3 Ghandi 5
Databases	1 Ming 4
Otto	1 Otto 6
3333 Clara Oehna 450 Infor 459. Databases	1
OCaml	2

Program 10.2.7: Pay each student 100 euros for each of their projects			
aus students.tab			
BONUS:= PROJ1 ++1 *100			
gib STID,NAME,BONUS m			
Result			
STID,NAME, BONUS m			
1111 Ernst 200			
2222 Sophia 300			
3333 Clara 0			
4444 Ulrike 100			
5555 Käthe 100			
6666 Claudia 200			

Program 10.2.8: Pay each Oehna student an additional bonus based on their grade point average..
aus students.tab
avec LOC=Oehna
AVG1:= MARK1 ++:
BONUS3:=1000 : AVG1

gib STID,NAME,AVG1,BONUS3 m
rnd 2
Result
STID,NAME ,AVG1,BONUS3 m
1111 Ernst 1.33 750.00
3333 Clara 1.50 666.67

With the help of rnd (round) every value of a table is rounded to 2 digits after point (dot). For texts the value remains unchanged again.

Program 10.2.9: The students of the math faculty get a bonus of 900 euros, the computer science of 800 euros and all others get 700 euros.

aus students.tab
BONUS:= 900 if FAC=Math !
800 if FAC=Infor!
700
gib STID,NAME,FAC, BONUS m
Result
STID, NAME , FAC , BONUS m
1111 Ernst Math 900
2222 Sophia Infor 800
3333 Clara Infor 800
4444 Ulrike Art 700
5555 Käthe Art 700
6666 Claudia Sport 700

Program 10.2.1	0: Calcula	te the BN	/I (body mass index) for each weight of each person
<tab!< td=""><td></td><td></td><td></td></tab!<>			
NAME, LENGTH	H, (AGE,	WEIGHT	1)1
Klaus 1.68	18	61	
		65	
	56	80	
	61	75	
Kathi 1.70	18	55	
	40	70	
!TAB>			
BMI:= WEIGHT	E LENG	TH : LEN	NGTH
rnd 2			
Result (tab)			
NAME ,LENGTH	H, (AGE,	WEIGHT,	, BMI 1) 1
Klaus 1.68	18	61	21.61
	30	65	23.03
	56	80	28.34
	61	75	26.57
Kathi 1.70	18	55	19.03
	40	70	24.22

Note that the given formula is applied not only to the rows where a length is written, but also to the following rows. This is possible because the table has a certain scheme and our system can understand the scheme.

10.3 Restructuring (gib)

The restructuring operation (stroke) allows to restructure any tabment into another arbitrary tabment only by specifying the scheme or the TT of the target tabment. Additionally, aggregations, elimination of duplicates, union, sorting and certain joins can be realized.

Program	n 10.3. 1	L: Illustra	ate the co	ollection s	symbols					
aus st	udent	s.tab								
gib FA	ACm,FA	Cb,FAC	l,FACm-	FACb-,	,FACl-,F	AC?				
Result										
FACm ,	FACb	,FACl	,FACm-	,FACb-	,FACl-	,FAC?				
Art	Art	Math	Sport	Sport	Sport	Math				
Infor	Art	Infor	Math	Math	Art					
Math	Infor	Infor	Infor	Infor	Art					
Sport	Infor	Art	Art	Infor	Infor					
	Math	Art		Art	Infor					
	Sport	Sport		Art	Math					

The STID segments (type: (STID, NAME, LOCATION?, STIP, FAC)) are inserted one after another into each of the given FAC collections. COURSE and PROJ segments are ignored. For clarity purposes, we have kept the collection symbols of the gib clause.

Program	n 10.3.2: Sort students by FAC and NAME.
aus st	tudents.tab
gib FA	AC,NAMEb m
Result (tabh)
FAC,	NAMEb m
Art	Käthe
	Ulrike
Infor	Clara
	Sophia
Math	Ernst
Sport	Claudia

STID segments are inserted first into the FAC level and then deeper into the NAME level, segment by segment. COURSE and PROJ segments are not touched anymore.

Program 10.3.3: Sort students by FAC and NAME, resulting in a flat table
aus students.tab
gib FAC,NAME m
Result (tab)
FAC , NAME m
Art Käthe
Art Ulrike
Infor Clara
Infor Sophia
Math Ernst
Sport Claudia

If we replace m with b, the result elements do not change.

Program 10.3.4: Sort the faculties downwards by BUDGET and secondly by
Student Capacity.
aus facs.tab
gib BUDGET,STUDCAPACITY,FAC m-
Result (tab)
BUDGET, STUDCAPACITY, FAC m-

10000 500	Infor	
8000 150	Sport	
2000 600	Art	
1000 200	Math	
1000 10	Philo	

Program 10.3.5: Sort the faculties by budget and additionally by student capacity. (two independent sortings of one table). aus facs.tab gib BUDGET,FAC m-,(STUDCAPACITY,FAC m-) Result (tab) BUDGET, FAC m-, (STUDCAPACITY, FAC m-) Infor 10000 600 Art 500 8000 Sport Infor 2000 Art 200 Math 1000 Philo 150 Sport 000 10 Philo Math

Program 10.3.6: P	ack each student's exam data by department (Re-group already grouped data).
aus students.	tab
gib FAC, (COURS	SE,MARK b)m
Result (tab)	
FAC ,(COURSE	, MARK b) m
Art Apel	1
Repin	1
Infor Algebra	3
Database	es 1
Database	es 1
OCaml	2
Otto	1
Math Algebra	1
History	1
Logic	2
Sport Psycho	2
Ski	1

Here the STID segments are inserted into the FAC level. They cannot be inserted deeper because they contain neither COURSE nor MARK values. The corresponding exams bags are then initially always empty. Then each COURSE segment ((COURSE, MARK) pair) is extended by its parent STID segment. These extended segments can be inserted step by step into the corresponding bgs. The extended segment has the type: (STID, NAME, LOC?, STIP, FAC, COURSE, MARK) PROJ segments are not needed.

Program 10.3.7: (Special selection with gib clause) Give all students, for which an LOC entry exists, with this entry. Give additionally the given collection for comparison purposes.				
aus students.tab gib NAME,LOC m,(NAME,LOC? m)				
Result (tab)				
NAME, LOC m, (NAME,	LOC? m)			
Clara Oehna Clara	Oehna			
Claudia Berlin Claudia	Berlin			
Ernst Oehna Ernst	Oehna			

Käthe	Gerwisch	Käthe	Gerwisch
Sophia	Berlin	Sophia	Berlin
		Ulrike	

In the first set, the user requests complete pairs. Since no pair exists for Ulrike, she cannot appear in the first result.

Program 10.3.8: (Selection with gib clause only.) Specify all students with non-empty exam collections.						
gib S	aus students.tab gib STID,NAME,FAC,COURSE,MARK m gib STID,NAME,FAC,(COURSE,MARK m)m					
Result		,	COULDE JUAN	x m/m		
		FAC .	(COURSE ,	MARK	m)	m
1111	Ernst	Math	Algebra	1	,	
****	Ernst	Math	History	1		
			Logic	2		
2222	Sophia	Infor	Algebra	2		
	зорпта	THIO	Databases			
			Otto	1		
3333	Clara	Infor	Databases	1		
			OCaml	2		
5555	Käthe	Art	Apel	1		
			Repin	1		
6666	Claudia	Sport	Psycho	2		
			Ski	1		
Interme	diate result	after the	first gib clause	:		
1111	Ernst	Math	Algebra	1		
1111	Ernst	Math	History	1		
1111	Ernst	Math	Logic	2		
2222	Sophia	Infor	Algebra	3		
2222	Sophia		Databases	1		
2222	Sophia	Infor		1		
3333	Clara		Databases	1		
3333	Clara	Infor		2		
5555	Käthe	Art	Apel	1		
5555	Käthe	Art	Repin	1		
6666	Claudia	-		2		
6666	Claudia	Sport	Ski	1		

To get the intermediate result, STID segments are tried to be inserted first. This is not possible because there is no exams-data on this level. Then again, each COURSE segment is extended by its first level parent data. This data is inserted exam by exam and student by student.

Program 10.3.9: For each name, output the "first" MARK entry or "null value" if no check entry is						
present. Print the other collections for comparison purposes.						
aus students.tab						
<pre>gib (NAME,MARK? m),(NAME,MARK m),(NAME,MARK b),(NAME,MARKb m)</pre>	gib (NAME,MARK? m),(NAME,MARK m),(NAME,MARK b),(NAME,MARKb m)					
Result (tabh)						
NAME, MARK? m, (NAME, MARK m), (NAME, MARK b), (NAME, MARK	b m)					
Clara 1 Clara 1 Clara 1 Clara 1	2					
Claudia 2 Clara 2 Clara 2 Claudia 1	2					

Ernst	1	Claudia	1	Claudia	1	Ernst	1 1 2
Käthe	1	Claudia	2	Claudia	2	Käthe	1 1
Sophia	3	Ernst	1	Ernst	1	Sophia	1 1 3
Ulrike		Ernst	2	Ernst	1	Ulrike	
		Käthe	1	Ernst	2		
		Sophia	1	Käthe	1		
		Sophia	3	Käthe	1		
				Sophia	1		
				Sophia	1		
				Sophia	3		

STID segments can be inserted in the first and last collection, since only names are required.

Program 10.3.10: (Restructuring) Reverse the given structuring. I.e., swap COURSE and NAME.					
aus studer	aus students.tab				
gib COURSE	E,(NAME,N	MARK b)m			
Result (tab)					
COURSE , ((NAME ,	MARK b) m			
Algebra	Ernst	1			
	Sophia	3			
Apel	Käthe	1			
Databases	Clara	1			
	Sophia	1			
History	Ernst	1			
Logic	Ernst	2			
OCaml	Clara	2			
Otto	Sophia	1			
Psycho	Claudia	2			
Repin	Käthe	1			
Ski	Claudia	1			

Here, an attempt is first made to insert the STID segments. Since no COURSE attribute exists, they cannot be inserted. Therefore, the extended COURSE segments are inserted first at the COURSE level and then at the NAME level.

Program 10.3.11: (Restructuring with additional tags) Reverse the given structuring by changing COURSE from inner to outer collection and NAME from outer to inner. Create additional tuple and sub-tuple tags.

sub-tupie tags.
aus students.tab
gib COURSES
COURSES = COURSETUPLEm
COURSETUPLE = COURSE, EXAMSTUPLEb
EXAMSTUPLE = NAME,MARK
Result (ment)
<courses></courses>
<coursetuple></coursetuple>
<course>Algebra</course>
<examstuple></examstuple>
<name>Ernst</name>
<mark>1</mark>
<examstuple></examstuple>
<name>Sophia</name>
<mark>3</mark>

</EXAMSTUPLE> </COURSETUPLE> <COURSETUPLE> <COURSE>Apel</COURSE> <EXAMSTUPLE> <NAME>Käthe</NAME> <MARK>1</MARK> </EXAMSTUPLE> </COURSETUPLE> <COURSETUPLE> <COURSE>Databases</COURSE> <EXAMSTUPLE> <NAME>Clara</NAME> <MARK>1</MARK> </EXAMSTUPLE> <EXAMSTUPLE> <NAME>Sophia</NAME> <MARK>1</MARK> </EXAMSTUPLE> </COURSETUPLE> <COURSETUPLE> <COURSE>History</COURSE> <EXAMSTUPLE> <NAME>Ernst</NAME> <MARK>1</MARK> </EXAMSTUPLE> </COURSETUPLE> <COURSETUPLE> <COURSE>Logic</COURSE> <EXAMSTUPLE> <NAME>Ernst</NAME> <MARK>2</MARK> </EXAMSTUPLE> </COURSETUPLE> <COURSETUPLE> <COURSE>OCaml</COURSE> <EXAMSTUPLE> <NAME>Clara</NAME> <MARK>2</MARK> </EXAMSTUPLE> </COURSETUPLE> <COURSETUPLE> <COURSE>Otto</COURSE> <EXAMSTUPLE> <NAME>Sophia</NAME> <MARK>1</MARK> </EXAMSTUPLE> </COURSETUPLE> <COURSETUPLE> <COURSE>Psycho</COURSE> <EXAMSTUPLE> <NAME>Claudia</NAME> <MARK>2</MARK> </EXAMSTUPLE> </COURSETUPLE>

<coursetuple></coursetuple>
<course>Repin</course>
<examstuple></examstuple>
<name>Käthe</name>
<mark>1</mark>
<coursetuple></coursetuple>
<course>Ski</course>
<examstuple></examstuple>
<name>Claudia</name>
<mark>1</mark>

Now we want to illustrate the set-theoretic operations union, intersection, and set-difference. Since the STID column in students.tab is already a union, we illustrate the union with the files exams1 and projects1.

Program 10.3.12: Construct the union of two files, where each value of each file should appear in he result	
aus examen1.tab,projects1.tab # a pair of tables gib STIDb	
Result (tabh, width 50))	
STIDb	
1111 1111 1111 1111 1111 2222 2222 2222 2222	
2222 2222 3333 3333 3333 35555 5555 555	
5666 6666 6666 6666 · · · · · · · · · ·	
f we replace b with m in the gib statement, duplicates are eliminated. Result	
STIDI	
111 2222 3333 5555 6666	
f we want to know from which file each STID comes from, we can add corresponding information	1
aus examen1.tab,projects1.tab # a pair of tables	
gib STID,COURSE?,PROJ? b	
Result	
STID,COURSE?, PROJ? b	
111 Fritz	
l111 Otto l111 Algebra	
L111 History	
L111 Logic	
2222 Ghandi	
2222 Ming	
2222 Otto	
2222 Algebra	
2222 Databases 2222 Otto	
3333 Databases	
3333 OCaml	
1444 Monet	
5555 Monet	
5555 Apel	

5555	Repin	
6666		Matthes
6666		Witt
6666	Psycho	
6666	Ski	

Program 10.3.13: Construct the intersection of two files with different schemas.

aus exams1.tab,projects1.tab
gib STID,COURSE?,PROJ? m
gib STID,COURSE,PROJ m
<pre># This restructuring can also be realized through selections</pre>
gib STIDm
Result (tabh, width 50))

STIDm

1111	2222	5555	6666	
------	------	------	------	--

Intermediate result after the first gib statement

STID,	COURSE?,	PROJ? m
1111 /	Algebra	Fritz
2222	Algebra	Ghandi
3333	Databases	
4444		Monet

5555 Apel Monet 6666 Psycho Matthes

Program 10.3.14: Set difference: Specify all STIDs of examen1.tab that are not contained in projekte1.tab.

aus exams1.tab rename STID ! STUDID

<pre>,projects1.tab # in turn results in a tuple (pair) of tables</pre>)
sans STUDID in STIDm	

gib STUDIDm

Result (tab)

STUDIDm

3333

Program 10.3.15: like 10.3.14, but with nested query
aus exams1.tab
sans STID in begin projects1.tab;; gib STIDm end
gib STIDm
Result (tab)
STUDIDm
3333

Program 10.3.16: (Grouping with Aggregation) Calculate the number of students and the number for each faculty. Sort the students by FAC and NAME.
<pre>aus students.tab gib CNT,(FAC,CNT,(NAME,STID b)m) CNT:= STID! ++1</pre>
Result (tab)
CNT, FAC, CNT2, (NAME, STID b) m
6 Art 2 Käthe 5555 Ulrike 4444

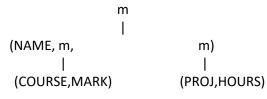
Infor	2	Clara	3333
2	_		
		Sophia	2222
		Sophia	
Math	1	Ernst	1111
	_		
Sport	1	Claudia	6666
Spor c	_	CIGGGI	0000

Program 10.3.17: (Restructuring with Aggregation) Give the total of all scholarships and the total for each course. Sort the records by course.

<pre>aus students.ta gib SU,(COURSE SU:= STIP!</pre>	,SU m)
Result (tab)	
SU ,(COURSE ,	SU2 m)
2950 Algebra	900
Apel	600
Databases	850
History	500
Logic	500
OCaml	450
Otto	400
Psycho	600
Repin	600
Ski	600

It is interesting to note here that the ++ of the inner SU values is generally larger than the outer SU value. This is due to the fact that a particular course usually occurs in more than one student record.

Progra	Program 10.3.18: Search the name of the student with ID 2222						
aus	us students.tab						
avec	vec STID = 2222						
gib	NAME						
Result	Result (tab)						
NAME							
Sophia							


Program 10.3.19: Divide the students of the two faculties of computer science and art into two independent tables.									
<pre>aus students.tab STIDINFOR:= STID if FAC=Infor STIDART := STID if FAC=Art gib STIDINFOR,NAME,LOC? m,(STIDART,NAME,LOC? m)</pre>									
Result (tab)									
STIDINFOR,	NAME,	LOC? m,	(STIDART,	NAME,	LOC? m)				
2222 3333	Sophia Berlin 4444 Ulrike Clara Oehna 5555 Käthe Gerwisch								

The concept of hierarchical path is important for all operations. Its definition is based on "narrow" schemes. All collection symbols except '?' are real collection symbols.

A **schema s is narrow** if for any 2 real collection symbols c and c' holds, either c is contained in c' or c' is contained in c. Fields f1 and f2 of a schema s are on a **hierarchical path** (**HP for** short) **with respect to s** if the schema formed by forgetting all fields except f1and f2 is narrow.

X,Ym,Zm m is not narrow, but X,Y?,Z? m is. PROJ and COURSE are in

NAME, (COURSE, MARK m), (PROJ, HOURS m)m, not on a hierarchical path; unlike PROJm and COURSE. This is visible in the graphical representation of the schema.

Program 10.3.19: Put simply two fields that are not on one HP onto one HPaus students.tabgib COURSE, PROJ m # in any case emptyResult (tabh)COURSE, PROJ 1

Program 10.3.20: Sort and group the students, who have taken an Algebra COURSE by their						
corresponding grades and sort them by name and print all their projects.						
aus students.tab						
avec COURSE=Algebra						
gib NAME,MARK?,(PROJ,HOURS m)m						
gib MARK,(NAME,(PROJ,HOURS m)b) m						
Result						
MARK, (NAME, (PROJ, HOURS m) b) m						
1 Ernst Fritz 4						
Otto 2						
3 Sophia Ghandi 5						
Ming 4						
Otto 6						

Although PROJ and MARK are not on one HP, the project collection is not empty. This could be realized by a somewhat subtle formulation with 2 gib statements. We will get to know a more easily understandable formulation of such requests in the following.

10.4 A simple join and nested queries

The horizontal merging or joining of the information of two tables is called a "join". In our approach, joining two flat tables is not necessarily a flat table. We do not need an additional join operation. Meaningful structures can be created with :=.

Progr	Program 10.4.1: Add exam data to student data							
aus	aus students1.tab							
EXAM	S:= exa	ams1.tal	b at F	AC				
Initial part of the result (tab)								
STID,	NAME ,	LOC?	,STIP,	FAC ,	(STID,	COURSE ,	MARK m) m	
1111	Ernst	0ehna	500	Math	1111	Algebra	1	
					1111	History	1	
					1111	Logic	2	
					2222	Algebra	3	
					2222	Databases	5 1	
					2222	Otto	1	
					3333	Databases	5 1	
					3333	OCaml	2	

									 	_
					5555	Apel	1			
					5555	Repin	1			
					6666	Psycho	2			
					6666	Ski	1			
2222	Sophia	Berlin	400	Infor	1111	Algebra	1			
					1111	History	1			
					1111	Logic	2			
					2222	Algebra	3			
					2222	Databases	1			
					2222	Otto	1			
					3333	Databases	1			
					3333	OCaml	2			
					5555	Apel	1			
					5555	Repin	1			
					6666	Psycho	2			
					6666	Ski	1			
3333	Clara	0ehna	450	Infor	1111	Algebra	1			
					1111	History	1			
					1111	Logic	2			
					2222	Algebra	3			

The result contains 5*10=50 subtuples. To get the 10 desired subtuples, we need to add a condition.

Progra i join").	Program 10.4.2: Add all corresponding exam records to each student record ("structured left outer join").								
EXAMS	aus students1.tab EXAMS:=exams1.tab at FAC avec COURSE! STUDENTS1/STID=EXAMS/STID								
Result ((tab)								
STID,	NAME ,	LOC?	,STIP,	FAC ,	(STID,	COURSE ,	MARK m) m		
1111	Ernst	0ehna	500	Math	1111	Algebra	1		
					1111	History	1		
					1111	Logic	2		
2222	Sophia	Berlin	400	Infor	2222	Algebra	3		
					2222	Databases	1		
					2222	Otto	1		
3333	Clara	0ehna	450	Infor	3333	Databases	1		
					3333	OCaml	2		
4444	Ulrike		400	Art					
5555	Käthe	Gerwisch	600	Art	5555	Apel	1		
					5555	Repin	1		
6666	Claudia	Berlin	600	Sport	6666	Psycho	2		
					6666	Ski	1		

If we want to omit Ulrike, we just have to omit the level identifier 'COURSE:'. Each tabment with the name xyz.tab has the outermost tag XYZ. Therefore, the above extension results in the following TT:

TT (tab type of the result) TABMENT! STUDENTS1 STUDENT1! STID,NAME,LOC?,STIP,FAC,EXAMS m EXAMEN! STID,COURSE,MARK m MARK STIP STID! ZAHL COURSE FAC LOC NAME! TEXT This TT allows accurate specification of column names despite duplicate name occurrences. EXAMS/COURSE is the same as COURSE, because COURSE appears only once on the right side of the TT.

In addition, STUDENTS1 is on the right side of EXAMS, so the tag path STUDENTS1/EXAMS/COURSE is also identical to COURSE. However, the "tag path" STID does not specify exactly, since it occurs twice. STUDENT1/STID is the student identifier of the studenten1 table and EXAMEN/STID=STUDENTEN1/EXAMEN/STID of the exam table.

In a marker path X/Y/Z, Z must occur on the right side of Y and Y must occur on the right side of X in TT. X is the paternal marker of Y and Y is the paternal marker of Z. There is no tag between X and Y and Y and Z (in the XML or ment representation). If we don't know all the intermediate tags, we can also use the X//Z notation. In this case, there can be any number of tags between X and Z. That is, this tag path corresponds to a complete tag path X/X1/X2/.../Xn/Z for matching tags X1,...,Xn. Therefore STUDENTS1//COURSE describes COURSE in the same way as the full tag path STUDENTS1/EXAMS/COURSE.

Progra	Program 10.4.3: Program with nested query						
aus s	aus students1.tab						
EXAMS	S:=begin a	aus exams:	1.tab;	;avec S	STID=S	TID~ end at	t FAC
Result	(tab)						
STID	, NAME ,	LOC?	,STIP,	FAC ,	(STID,	COURSE ,	MARK m) m
1111	Ernst	0ehna	500	Math	1111	Algebra	1
					1111	History	1
					1111	Logic	2
2222	Sophia	Berlin	400	Infor	2222	Algebra	3
					2222	Databases	1
					2222	Otto	1
3333	Clara	Oehna	450	Infor	3333	Databases	1
					3333	OCaml	2
4444	Ulrike		400	Art			
5555	Käthe	Gerwisch	600	Art	5555	Apel	1
					5555	Repin	1
6666	Claudia	Berlin	600	Sport	6666	Psycho	2
					6666	Ski	1

Nested queries are contained in begin and end. If we want to refer to a column name outside the inner query, we must add a "~". Therefore STID~ is the identifier of STID of students1.

Program 10.4.4: Attempts to generate the given stud	Program 10.4.4: Attempts to generate the given student table from three given flat relations								
aus students1.tab	aus students1.tab								
PR:=begin aus projects1.tab									
avec STID=STID~	avec STID=STID~								
gib PROJ,HOURS m end at FAC									
EX:=begin aus exams1.tab									
avec STID=STID~									
gib COURSE,MARK m end at FAC	gib COURSE,MARK m end at FAC								
Result (tab)									
STID, NAME , LOC? ,STIP, FAC ,(COURSE ,	MARK m),(PROJ , HOURS m) m								
1111 Ernst Oehna 500 Math Algebra	1 Fritz 4								
History	1 Otto 2								

					Logic	2		
2222	Sophia	Berlin	400	Infor	Algebra	3	Ghandi	5
					Databases	1	Ming	4
					Otto	1	Otto	6
3333	Clara	0ehna	450	Infor	Databases	1		
					OCaml	2		
4444	Ulrike		400	Art			Monet	10
5555	Käthe	Gerwisch	600	Art	Apel	1	Monet	20
					Repin	1		
6666	Claudia	Berlin	600	Sport	Psycho	2	Matthes	8
					Ski	1	Witt	12

The result corresponds to students.tab.

Progra	Program 10.4.5: Generate a table with three nested levels.									
	aus facs.tab									
0.0.0	weg STUDCAPACITY									
•		is studer	ntc1 to	h						
	avec FAC		1131.10							
		end at								
	-	is exams:	1.tab							
		D=STID~	CTTP							
		D end at	t STIP							
Result	: (tab)									
FAC	,DEAN ,	BUDGET,	(STID,	NAME ,	(LOC?	,STIP,((COURSE ,	MARK m)	m) m	
Art	Sitte	2000	4444	Ulrike		400				
			5555	Käthe	Gerwisch	600	Apel	1		
							Repin	1		
Infor	Reichel	10000	2222	Sophia	Berlin	400	Algebra	3		
							Databases	1		
							Otto	1		
			3333	Clara	0ehna	450	Databases	1		
							OCaml	2		
Math	Dassow	1000	1111	Ernst	0ehna	500	Algebra			
							History	1		
	_						Logic	2		
	Hegel									
Sport	Streich	8000	6666	Claudia	Berlin	600	Psycho	2		
							Ski	1		

If we want to delete only a few columns, we can use the weg (away) clause instead of a gib clause. We notice that we get a structure with nesting depth 3, although the deepest nesting level in the program is 2.

10.5 A user-friendly join (igib)

Through Example 10.3.20, it has become clear that the problem of loading data onto an HP when it is not yet on an HP in the source structure can be solved in some situations with an additional gib statement without using the Cartesian product. This problem is even more important when we consider a given relational database with flat structures. In a tuple of such files, nothing is on an HP except the fields that are in the same table. Therefore, an ordinary gib statement is not very expressive. Relational systems solve this problem with joins. But the join is related to the Cartesian product. Moreover, join conditions have to be used. In [Gol08] experiments with students were described. They showed that missing join conditions are the most common semantic SQL error. If we use both constructs of this section, the join conditions generally do not need to be written. Moreover, the igib construct is not based on the Cartesian product at all. In the first part of this section, we present some typical queries for igib. It is easy to use igib, but its definition seems to be a bit more complicated than its application.

Program 10.5.1: Give the very good exams and the time-intensive projects for all students who do not live in Gerwisch, who completed a COURSE with a 1, and who have the time-intensive projects. Group the students by place of residence.

Group	the studen	to by place o	1 ICSIGCIIC	L.					
aus	<pre>students1.tab,exams1.tab,projects1.tab</pre>								
sans	LOC=Gerw	isch							
avec l	MARK=1								
avec l	HOURS>2								
igib	LOC,(NAM	E,(COURSE	,MARK m)	,(PROJ,HO	OURS m))b)m			
Result	(tab)				-				
LOC ,	(NAME ,	(COURSE ,	MARK 1),	(PROJ ,	HOURS	m) b)	m		
Berlin	n Claudia	Ski	1	Matthes	8				
				Witt	12				
	Sophia	Databases	1	Ghandi	5				
		Otto	1	Ming	4				
				Otto	6				
0ehna	Ernst	Algebra	1	Fritz	4				
		History	1						

The restructuring by igib contains a preceding natural selection natsel. This can also be used independently of igib. natsel selects until 2 columns with the same name (here only STID) have the same values.

aus students1.tab,exams1.tab,projects1.tab

natsel

Corresponding intermediate result after natsel:

STID,	NAME,	LOC?,	STIP,	FAC	m,(STID,	-		m),(STID,	PROJ,	HOURS m)
1111	Ernst	0ehna	500	Math	1111	Algebra	1	1111	Fritz	4
2222	Sophia	Berlin	400	Infor	r 1111	History	1	1111	Otto	2
5555	Käthe	Gerwisch	600	Art	1111	Logic	2	2222	Ghandi	5
6666	Claudia	Berlin	600	Sport	t 2222	Algebra	3	2222	Ming	4
					2222	Databases	1	2222	Otto	6
					2222	Otto	1	5555	Monet	20
					5555	Apel	1	6666	Matthes	8
					5555	Repin	1	6666	Witt	12
					6666	Psycho	2			
					6666	Ski	1			

Program 10.5.2: Group and sort student names with bad grades by location and faculty and output the students' bad courses.

aus facs.tab,students1.tab,exams1.tab avec MARK>2 igib LOC,FAC,DEAN,NAME,(COURSE,MARK m) m Result(tab) LOC, FAC, DEAN, NAME,(COURSE, MARK m) m Berlin Infor Reichel Sophia Algebra 3

Program 10.5.3: Give out all students from Oehna with dean, courses and projects..
aus students.tab,facs.tab
avec LOC=Oehna
igib STID,NAME,FAC,DEAN,COURSEm,PROJm m
Result (tab)

STID,	NAME,	FAC,	DEAN,	COURSEm,	PROJm	m
1111	Ernst	Math		0	Fritz Otto	
3333	Clara	Infor		Logic Databases OCaml	0000	

Program 10.5.4: Add the instructor column to the courses of the students of the computer science faculty.

aus students.tab,co	urses.tab								
avec FAC=Infor	FAC=Infor								
igib NAME,LOC?,(COURSE,TEACHER,MARK m),PROJm m									
Result (tab)									
NAME , LOC?, (COURSE ,	TEACHER, MARK m),PROJm m								
Clara Oehna Database	Saake 1								
Sophia Berlin Algebra	Reichel 3 Ghandi								
	Saake 1 Ming								
Otto	Benecke 1 Otto								

Program 10.5.5: Find all students from large faculties who have a good mark in algebra.
FAC ,(LOC ,NAMEb m) m . Structure students by FAC and LOC, and sort them by NAME.
aus facs.tab,students1.tab,exams1.tab
avec STUDCAPACITY>300
avec MARK<4 & COURSE=Algebra
igib FAC,(LOC,NAMEb m)m
Result (tab)
FAC,(LOC ,NAMEl m) m
Infor Berlin Sophia

11 Queries to Wikipedia (keys)

Like other Wikipedia, the German Wikipedia represents a great treasure of knowledge about Germany and the world. After the English Wikipedia, it is the largest in the world. It already has 2.6 million entries and the number, scope and quality of the content are constantly being improved. Today, most queries to Wikipedia are of a simple nature. Give me the entry with the key xyz. These queries are answered quickly and are nicely laid out. If the key does not exist, a full text search is performed.

Since Wikipedia's documents are very well structured, many more interesting queries could be realized. In addition, many simple queries can be enabled if many documents are extended by further metadata (e.g. infoboxes) in a suitable way. Metadata is data about data. For example, the "column name" LENGTH (or AREA) is already contained in each RIVER (or COUNTRY) document. Therefore, it would be possible to extract the 10 largest rivers in the world or Europe by a simple query, if appropriate query facilities exist. These are typical database queries. Next to images, structured text takes up the largest amount in Wikipedia. This means that we need a language that can combine databases and document queries in a user-friendly way. It must have finely granulated selection capabilities and the ability to select parts of documents and combine these parts into new documents. Also, Wikipedia contains a significant amount of numerical data. Therefore, it must also have facilities for computation. For example, since the age of a person is usually not included in Wikipedia, calculation capabilities are necessary. In the above case, only the difference between the year of death or the current date and the birth must be realized.

Compared to the other documents of the Internet (HTML), Wikipedia is very well structured. Nevertheless, Wikipedia documents do not have such a fixed type as XML documents. It should be achieved that the existing and future documents are further standardized (define suitable infoboxes and adapt documents to them) to ensure that queries can be formulated as simply as possible. This means that in addition to increasing the quantity, the quality should also be improved in the above sense.

The following TT represents approximately corresponding parts of the structure of the German Wikipedia. The user must know this metadata or at least have it available. Otherwise he will not be able to formulate or understand queries. The metadata is written in German to make corresponding queries easier to understand.

```
A small but an essential part of the metadata of the German Wikipedia.

WIKI! <u>TITEL</u>, (<u>ANR</u>, ATITEL, INHALT m), INFOBOX, INFO s

TITEL,ATITEL,INHALT! TEXT

ANR! ONR

BILD! BTITEL, JPG

URL, WIKILINK! WORT

TITEL ATITEL FETT KURSIV BTITEL! TEXT

Each infobox has its own scheme. We give some examples:

STAAT! EINWOHNER, FLAECHE, OFFIZIELLESPRACHE1,...

STADT! STAAT?, BUNDESLAND?, PROVINZ?, LANDKREIS?,

GEMEINDE?, HOEHE, FLAECHE, EINWOHNER, ....

FLUSS! GEWAESSERKENNZEICHEN?, LAGEm, FLUSSSYSTEM?,

LAENGE?, EINZUGSGEBIET1,QUELLE,LINKERNEBENFLUSS,

RECHTERNEBENFLUSS1, GROSSSTAEDTE, MITTELSTAEDTE,...

LAENGE GROSSTAEDTE MITTELSTAEDTE ...! TEXT
```

From the user's point of view, Wikipedia consists of only one file. However, it contains many different objects of different types. The names of the types are written in the INFOBOX column. For Elbe, Rhine and Vistula, ... river is written there. So a condition INFOBOX=River selects all rivers of

Wikipedia. When transferred to databases, this would be a single large file with its own extensive metadata such as LENGTH, SOURCE, LARGE CITIES,...... The disadvantage is that all major cities of a river are combined in one field. In the program o++o one must therefore first create a repeating group GROSSSTADTI. It would be better if the Wikipediadatabase would already provide a repeating group here. The infobox FLUSS alone has more than 20 column names. With this it is already clear that due to the many different infobox names a myriad of column names exist. This increases the complexity and is therefore a disadvantage. However, this also allows more diverse queries to be realized, so that queries to Wikipedia open up great new possibilities not only for end users, but also for specialists.

Another feature of the above metadata is that the structured texts are not stored recursively. This facilitates text queries.

Since our implementation so far only works on the German Wikipedia, all examples are in German. The following description is based on queries to a part of Wikipedia with about 28'000 struples (structured tuples = complex data sets). Loading the struples took about 60 minutes. In general, we assume that we load the entire Wikipedia into memory. Loading the part of Wikipedia mentioned above required a total memory consumption of 6.9 GByte. We call our part of the German Wikipedia with the word wiki or 'from wiki'.

s is the abbreviation for set. Unlike m, s does not require a unique scheme.

Program 11.1: How many struples (structured tuples=entries) does our Miniwikipedia contain?
wiki ++1 '3
Result
28'819

Program 11.2: Wanted	l is the first part of the table of contents of the city of Magdeburg.								
wiki									
keys [Magdeburg]									
gib TITEL,(ANR,ATITEL m)									
avec ANR <=12									
Result (tab):									
TITEL ,(ANR	,ATITEL 1)								
Magdeburg 0	Einleitung								
1	Geographie								
1.1	Schutzgebiete								
1.2	Klima								
1.3	0								
1.4	Stadtgliederung								
2	Geschichte								
2.1	Bedeutung und Herkunft des Namens								
2.2	Ur- und Frühgeschichte								
2.3	Mittelalter								
2.4	Frühe Neuzeit								
2.5	19. Jahrhundert								
2.6	Weimarer Republik und Nationalsozialismus								
2.7	Nachkriegs- und DDR-Zeit								
2.8	1990 bis zur Gegenwart								
2.9	1200. Stadtjubiläum								
2.10	Eingemeindungen								

2.11	Bevölkerungsentwicklung
3	Religionen
3.1	Kirchengeschichte
3.2	Evangelische Kirchen
	•
3.3	Römisch-katholische Kirche
3.4	Zeugen Jehovas
4	Politik
	Stadtrat
4.2	Oberbürgermeister seit 1808
4.3	Wappen, Flagge und Dienstsiegel
4.4	Städtepartnerschaften
4.5	Stadtkampagne
5	Kultur und Sehenswürdigkeiten
	Bauwerke
	Sakralbauten
	Altstadt und alte Neustadt
	Außenbezirke
	Festungsanlagen
	Profanbauten und weitere Bauwerke
5.1.4	Denkmäler und Skulpturen
5.2	Friedhofsanlagen Plätze und Straßen
	Brunnen
	Brücken
5.6	
	Galerien
5.8	Theater und Oper
	Kabarett
5.10	Freizeit und Tourismus
5.11	Zoologischer Garten
	Parks und Gärten
	Veranstaltungsorte
	Nachtleben
5.14	Sport
	Regelmäßige Veranstaltungen
	Frühling
5.15.2	5
5.15.3	
5.15.4	Winter
5.16	Musik
5.17	Kulinarische Spezialitäten
5.18	Große Einkaufsmöglichkeiten
5.19	Stolpersteine
5.20	Halbkugeln
6	Wirtschaft und Infrastruktur
6.1	Industrie
6.2	Verkehr
	Schienenverkehr
	Straßenverkehr
	Straßennamen
	Öffentlicher Personennahverkehr
	Fahrradverkehr
	Schifffahrt
•••	

Program 11.3 Give information about the nightlife of Magdeburg

wiki

keys [Magdeburg]

avec ATITEL=Nachtleben

gib INHALT # CONTENT

Result (web)

Magdeburg's nightlife consists mainly of dance events in larger discotheques and smaller clubs, in addition to live concerts. A distinctive feature of Magdeburg is that many of these venues are located in former fortresses and industrial facilities that have been vacant since reunification. Some larger discotheques include the Festung Mark, which hosts electronic music events as well as cultural events, and the "Alte Theater" on Jerichower Platz. Also offering an industrial feel is the former factory hall "Factory" in the south of the city, where German and international pop, rock, metal, indie bands regularly play and disco events are held. The nobler clubs of the city include the "Prinzzclub" and the "First", which offer a mix of lounge and club. At 45 years old, the "Studentenclub Baracke" is the oldest club in the city and is located directly on the grounds of Otto von Guericke University. As an equivalent, the "Kiste" exists on the campus of the university hospital for students of the medical faculty. In addition, there are other medium-sized and smaller discos and clubs, such as the "Boys'n'Beats", the "Alte Feuerwache", the "Kunstkantine" or the "Triebwerk". Also worth mentioning are the clubs "Strandbar", modeled after a beach, directly on the Elbe, with one of the first citybeach concepts in Germany, and the "Montego Beachclub" in the Stadtpark Rotehorn with volleyball courts and a large pool. In 2016 and 2017, some discos were closed. For example, in the south of the city until 2016 was the large-capacity discotheque "Music Hall", the former "Funpark", which served special music genres in addition to mainstream genres. In addition, in 2016 the "Discoturm Nautica (Pearl Club)" was closed after the fun club changed operators following insolvency and was rebuilt. Finally, at the beginning of 2017, the "Kulturwerk Fichte", a listed industrial hall from the founding times, where scene parties and other large events were held, was closed[[Ref]][[Ref]]. The Hasselbachplatz at the southern city center has developed into Magdeburg's pub center in recent years. Due to the high frequency during the day, but especially in the evening hours by visitors to the numerous clubs, bars and pubs, the square is classified as a crime hotspot and is monitored by video technology.

```
Program 11.4 like request 11.3 only a little more efficient
wiki
keys [Magdeburg, ["5.13.1"]]
gib INHALT
Result
same result as 11.3
```

Program 11.5 Output section 5.15	of Magdeburg with all subsections of any depth.
wiki	
keys [Magdeburg]	
avec ANR like "5.15*"	
gib ANR,ATITLE,CONTENT m	
Result (web)	
ANR ATITLE	CONTENTS
5.15 Regular	
events	

	The "Magdeburg Spring Fair", a three-week shindig at the beginning of spring, is held annually at the fairground "Max Wille" at the Kleiner Stadtmarsch directly on the banks of the Elbe. Since 2010, the RoboCup German Open has been held in Magdeburg's exhibition halls [[Ref]] in March/April. Thousands of visitors follow international teams competing with their robots in various disciplines, including robot soccer. Annually, the "Day of Thunder" has been held at Magdeburg's airfield since 2000. In 15 different racing classes, different builds of mopeds, motorcycles, cars and quads compete in a 1/8-mile race. In addition,
5.15.1 Spring	competitions such as "Best of Show", "Most Beautiful Overall Concept", "Best Paintjob", "Best Interior", "Best of Sound", "Best of Exhaust" and a "dB-Sound- Contest" will be held on a show stage. The Magdeburg Historical Spectacle Spectaculum Magdeburgense in May in the area of the old fortifications is a medieval event. Visitors are entertained by numerous events and activities, including, for example, fakir shows, theater performances, a medieval market and musical sounds from the period. Every year on Ascension Day, the "Festival of Encounters" against xenophobia takes place in the Rotehorn Park.
5.15.2 Summer	In addition to the cloister serenades in the cathedral, the nationally known summer open air of the Theater Magdeburg takes place on Magdeburg's cathedral square in July/August. The "BallonMagie" days in the Elbauenpark are held annually in August. Several hot air balloons take off at the same time and enrich the Magdeburg sky. Special shapes such as ice cream cones, sausage cans or airships are represented among the balloons. Christopher Street Day, also in August, is a day of celebration for lesbians, gays, bisexuals and transgenders. Demonstrations are held for the rights and against the exclusion of these groups. It takes place in numerous cities in Germany. The parade stretches from Neustadt train station through the city center, Hasselbachplatz to Liebigstraße. Around the historic quarter at Magdeburg Cathedral, the three-day "Kaiser Otto Fest" has been held annually since 2011, when buildings and squares such as the Cleve Bastion, the Unser Lieben Frauen Monastery, the Möllenvogteigarten, the Fürstenwall or the cathedral itself become venues for medieval attractions, performances and pageants such as Otto 1's coronation as emperor, jousting tournaments, falcorry shows and medieval songs. The festival is intended to commemorate the importance of the city of Magdeburg as the cradle of the German nation and European history. The bicycle action day takes place once a year. After a rally to the assembly point, a large bicycle demonstration leads across the city and over the Magdeburger Ring. In this way, the cyclists want to show their colors and advocate for a more bicycle-friendly city[[Ref]]. In 2014, it took place for the fourth time on June 28 s day. In September, Magdeburg celebrates the Landeserntedankfest, with over
5.15.3 Fall	35,000 [[Ref]];visitors the largest public event of the agricultural profession in Saxony-Anhalt, in the Elbauenpark. In addition, there are the jazz festival DIAGONALE, the literature weeks, an event for literature lovers with many offers and exhibitions, lectures and performances, the art festival Magdeburg, the OMMMA ("Ostmobil-Meeting Magdeburg") and the "Magdeburger Herbstmesse" (formerly "Herrenmesse"), a three-week carnival held at the beginning of autumn on the "Kleiner Stadtmarsch". In 2010 it celebrated its 1000th anniversary, because it finds its origin in the sacred feast of the Theban Legion of Archbishop Tagino, which was celebrated on 22 September 1010. From the year 1220, the feast of Mauritius and his fellow saints merged with the great Magdeburg fair, which at the time was still held on the cathedral square. Thus, the Magdeburg Autumn Fair is today the oldest folk festival in Germany[[Ref]].

The biggest event of the year is Magdeburg Christmas Market, with around 135 stalls. It attracts over 1.5 million visitors every year, is held on the Alter Markt and offers many attractions, for example daily live music, a Santa Claus talk, fairy tale performances and the historic Christmas market. It is considered one of the most child-friendly Christmas markets in Germany and is the longest daily open Christmas market in Germany[[Ref]]. In January, the so-called "Mile of Democracy" is held annually with over 10,000 visitors, with the Breite Weg to Hasselbachplatz being the venue for this event with numerous actions, information booths, discussion hours and an extensive stage program. It was created to take away the space from the march of right-wing extremists taking place at the same time. These use the anniversary of the air raids on Magdeburg on January 16, 1945 as an occasion for a funeral procession, and to equate the victims with the Holocaust and the murdered in the concentration and extermination camps and thus to trivialize the Nazi mass murders.

Program 11.6 Gi	ve the summary information of three major rivers
avec ANR! AN	Yangtze Amazon] R=0 ENGTH,CONTENT m-
TITLE LENGT	H CONTENTS
Mekong 4350	The "'Mekong'" ([] or []) is a stream in Southeast Asia that crosses six countries. Its length is given as 4350 km to 4909 km. This makes it one of the twelve longest rivers on earth.
Yangtze 6380	The "Yangtze River", in short "Yangtze"" (, for short:), is the longest river in China. With 6380 kilometers, of which 2800 kilometers are navigable, it is also the longest river in Asia and the third longest river in the world after the Nile and the Amazon. Its headwaters are in the highlands of Tibet in Qinghai. At its mouth into the East China Sea, it carries an annual average of 31,900 m ³ of water per second. The Yangtze River plays a major role in the self-image of the Chinese. It divides the country into North and South China and has been the site of numerous important events in Chinese history. These include its crossing by the People's Liberation Army during the Chinese Civil War on April 21, 1949, and the right of Western powers to navigate the river with gunboats, which existed until the middle of the 20th century.
Amazon 6992	The "'Amazon River'" (also , , in Brazil above the confluence of the Rio Negro near Manaus [[Ref]], formerly) is a stream in northern South America. About 300 km south of the equator, it crosses the Amazon basin, framed in the west by the Andes and characterized by tropical rainforest, eastward to the Atlantic Ocean. With an average water flow of 206,000 m ³ /s, the Amazon is by far the most water-rich river on earth and carries more water at its mouth than the six next smallest rivers combined and about 70 times more than the Rhine[[Ref]]. The river takes its name only from the confluence of its two headwaters, the Marañón and the Ucayali, in Peru, interrupted, however, by the Brazilian section above the city of Manaus called "Rio Solimões". The river, which is usually several kilometers wide in Brazil, has a relatively balanced water flow, since the flood phases of the tributaries meet the main stream near

the equator with a seasonal shift. Nevertheless, it can flood the adjacent forested alluvial areas ("várzea") over a width of up to 60 km. In two main branches it flows through the island world of the almost 200 km wide estuary, which is also connected to the Pará estuary by tidal waters, thus separating the large island of Marajó.

The next query identifies all medium and large cities located on the Spree River. The query result comes relatively fast, because not all 30'000 records have to be searched. This is because keys are used here and not the general avec operation. The titles of the records give direct access to the individual struples. When the query optimization is realized, keys should disappear from the user level again and be replaced by avec.

The two assignments for STADTI are necessary because Wikipedia stores the large and medium-sized cities as comma-separated lists. This means that a GROSSSTAEDTE entry results in a list of STADT. Wikipedia is based on the MariaDB relational database management system. These systems have general problems with lists (repeating groups):

```
Program 11.7: All large and medium-sized cities on the Spree are searched for in one column.

wiki

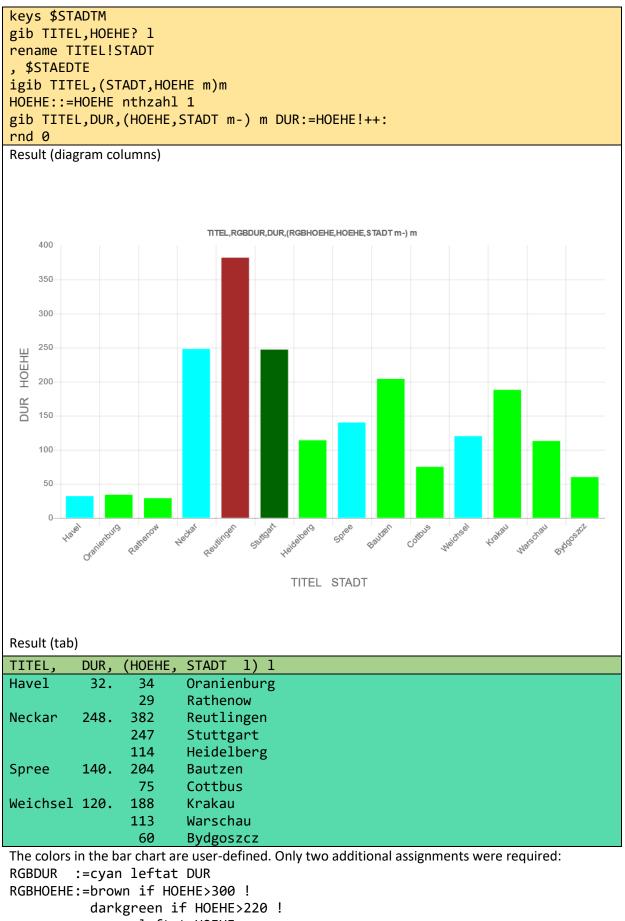
keys [Spree]

STADT1:=GROSSSTAEDTE cil at GROSSSTAEDTE

STADT1:=MITTELSTAEDTE cil at MITTELSTAEDTE

gib TITEL,STADT1

Result (tabh)


TITEL,STADT

Spree Cottbus Berlin Bautzen Spremberg Fürstenwalde/Spree
```

Program 11.8: Determine the heights above sea level of three cities
wiki
keys Berlin Stuttgart Heidelberg
gib TITEL,HOEHE 1
Result (tab)
TITEL, HOEHE 1
Heidelberg 114
Stuttgart 247

There is an important lesson to be learned from the above query. Even if you know a query language, you do not always get the desired information. Since the above Miniwiki does not contain an entry for Berlin, Berlin cannot appear in the result of this query language.

```
Program 11.9: Determine for 4 rivers the adjacent cities with their heights above sea level. For each
river, determine the average elevation of the cities above sea level.
wiki
keys [Neckar Havel Spree Weichsel]
STADT1:=GROSSSTAEDTE cil at GROSSSTAEDTE
STADT1:=MITTELSTAEDTE cil at MITTELSTAEDTE
gib TITEL,STADT1 m
=: $STAEDTE
aus $STAEDTE; gib STADTm
=: $STADTM
aus wiki
```


12 Special restructuring operations (onrs verti hori)

The onrs operation was introduced to provide o++o numbers for solving BOM problems. The given tabment must be of type

X1,...,Xn,(Y1, ... Yk m) m

where X1 and Y1 are the keys of the respective collections. We assume that both collections are sets. This gives us direct access to the corresponding tuples or subtuples in working memory. We consider an example:

Program	12.1: Build a	bill of mate	erials								
<tab!< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tab!<>											
PART,	PROPERTY,	(SUBF	COUNT	m)	m						
Bush	cylindric	al									
Rim	smooth										
Polo	modern	Whee		4							
		Engi		1							
		Body		1							
Golf	fast	Whee		4							
		Body		1							
				1							
- • •		Engi		1							
Piston	light		tonRing								
En esta a	h		0	1							
Engine	neavy	Pist		6							
Wheel	round	Scre		8 5							
WIEET	round	Screw Tire		1							
		Rim		1							
!TAB>		1111		-							
	TONR ! Go	lf									
Result (ta											
PART, F	PROPERTY,	(OTTONR,	SUBPART	. (OUNT	1)	1				
	fast	1	Wheel	4		/					
		1.1	Tire	1							
		1.2	Screw	5	;						
		1.3	Rim	1	-						
		2	Engine	1							
		2.1	Screw	8							
		2.2	Piston	E							
		2.2.1	PistonR								
		2.2.2	Bushing								
		3	Climate								
		4	Body	1							

It can be seen that all direct subparts from the Golf are assigned an otto number, which consists of only one number. The engine is one such part. The direct lower parts of the engine (screw and piston) are assigned otto numbers with two numbers. Similarly, the direct lower parts of the piston are assigned otto numbers with 3 numbers. Thus, a non-recursive set without redundancy is formed for the Golf. The table recursion could now be applied to this set to calculate the multiplicity of containing a subpart.

Beside the Inputtabment onrs needs the name of the ONR column (here OTTONR) and one or more parts (here only Golf) for which the ONR resolution is to be made. Accordingly, the program line

onrs STRUK_NR ! [Polo Golf]

is correct and reasonable.

The verti operation can be used to convert certain tuples into lists of pairs. This has the advantage that list operations, such as selecting, can be applied to these lists. This converts the metadata into primary data and inserts a new schema into the existing one. The following file was obtained from an EXCEL table.

climate_radiation1.tab

has the scheme:

ID, COUNTRY, WIDTH, LENGTH, SEAHEIGHT?, JAN, FEB, MRZ, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC l

It contains 17 columns. Using verti, you can reduce the number of columns to 7 in the following way: aus climate_radiation1.tab

verti MON, RADIATION 1:= JAN ...DEC

This flat table is transformed into a structured one, in which the radiations are arranged vertically and the months are output in an additional column:

ID, BG0001a-Varna	-		-	SEAHEIGHT	<pre>?, (MON,RADIATION 1) 1 Jan 63. Feb 68. Mar 81. Apr 87. May 88. Jun 81. Jul 86. Aug 100. Sep 95. Oct 88. Nov 66.</pre>	
BG0002a-Shume	n Bulgaria	a 43.28	3 26.93	3 242.	Dec 59. Jan 59. Feb 68. Mar 83. Apr 88. May 88. Jun 81. Jul 88.	

Now you can easily create statistics about RADIATION or easily select specific months,

Program 12.2: Arrange the subjects vertically so that they can be merged with the other subjects (for the determination of the report marks). <TABH! NAME, LOC, BORN, CLASS?, (HOBBY, HOURS 1), MATH1, GERMAN1 1 1 2 3111 Clara 0ehna 12.6.11 4 Riding 5 Chess 1 Claudia Dallgow 14.9.17 5 Chinese Food 4 5 Sophia Dallgow 7.9.13 2 Painting 1 2 121 Wheelturning 4 1 1 Chinese 6 !TABH> verti SUBJECT, MARK1 1:= MATH1 .. GERMAN1 Result (tabh) NAME ,LOC ,CLASS? ,(HOBBY ,HOURS , BORN 1),(SUBJECT ,MARK1 1) 1 Clara 0ehna 12.6.11 4 Riding 5 Math 1 2 Chess German 3 1 1 1 1

Claudia Dallgow 14.9.17	Chinese	5		
	Food	4		
Sophia Dallgow 7.9.13 2	Painting	5	Math	1 2 1 1
	Wheelturning	4	German	1 2 1
	Chinese	6		

The reverse operation to verti is hori. Here the elementary tag whose values are to become column names must be specified as the second input value.

Program 1	2.3: Arran	ge the subj	ects horizon	tally.			
<tabh!< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tabh!<>							
NAME,	LOC,	BORN,	CLASS?,	(HOBBY,	HOURS	1), (SUBJECT	,MARK1 1)1
Clara	0ehna	12.6.11	4	Riding	5	Math	12
				Chess	1	German	311
Claudia	Dallgow	14.9.17		Chinese	5		
				Food	4		
Sophia	Dallgow	7.9.13	2	.			1211
				Wheelturning	4	German	121
				Chinese	6		
!TABH>							
hori SUE	BJECT						
Result (tab	oh)						
NAME,	LOC?,	BORN?,	CLASS?,	(HOBBY,	HOURS	l),MATHl,	GERMAN1 1
Clara	0ehna	12.6.11	4	Riding	5	12	311
				Chess	1		
Claudia	Dallgow	14.9.17		Chinese	5		
				Food	4		
Sophia	Dallgow	7.9.13	2	Painting	5	1211	. 1 2 1
				Wheelturning	4		
				Chinese	6		

Just as in the above example the output table is created again by suitable successive application of verti and hori, this can also be achieved in the previous example:

Program 12.4 Application of verti and hori
climate_radiation1.tab
verti MONTH,RADIATION I :=JAN DEC
hori MONTH
Result (meta)
TABMENT! CLIMATE_RADIATION1 CLIMATE_RADIATION1! (ID,COUNTRY,WIDTH,LENGTH,SEAHEIGHT?,JAN,FEB,MRZ,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC I) ID COUNTRY! TEXT APR AUG WIDE DEC FEB JAN JUL JUN LENGTH MAY SEA HEIGHT MARCH NOV OCT SEP! PZAHL

13 Some operations for text processing with o++o (+ -+ cil zil satzl)

The + symbol can also be used to concatenate and manipulate text. Here, too, a small difference is made between TEXT and WORT. Example:

Program 13.1: There are small differences between WORD and TEXT concatenation
WORDRESULT:=otto + " o++o"
TEXTRESULT:=otto text + " o++o"
Result (tab)
WORDRESULT, TEXTRESULT
otto_o++o otto o++o

Since the first input value of WORDRESULT is a word, the result is also of type WORT. The same applies to the second case, where the result is a text. Words cannot contain spaces.

-+ is an operation with 3 input values

The TT of the first input value is retained. Each occurrence of the second input value is replaced by the third.

Program 13.2: -+text
<tab!< th=""></tab!<>
X, Y 1
1 Today is Monday.
2 Yesterday is Sunday.
!TAB>
-+text "is S" ! "was S"
Result (tab)
X,Y 1
1 Today is Monday.
2 Yesterday was Sunday.

Program 13.3:		
TEXTPLUS:="Today is a beautiful " + day		
TEXTMINUS:=Thunmmder_weather - "m"		
TEXTMINUSPLUS:="Today is a beaoetiful day." -+text oe ! u		
Result (tab)		
TEXTPLUS, TEXTMINUS, TEXTMINUSPLUS		
Today is a beautiful day Thunder_weather Today is a beautiful day.		

A function cil which extracts all words from a tabment has also been implemented. An analogous function for sentences (satzl) has been implemented, which so far uses a relatively rudimentary end-of-sentence detection.

```
Program 13.4: "Coding" a text.
"Today is Tuesday. Tomorrow is Wednesday."
zil
sans WORT inmath ["a" "e" "i" "o" "u"]
WORT::="t" if WORT="m"!
        "m" if WORT="t"!
        WORT;; ++text
Result (tab)
TEXT
Tdy s Tsdy. Ttrrw s Wdnsdy.
```

The cil operation is particularly useful for making queries on documents whose schema is not fully known to the user. With the term "avec Schulze back" he can select all elements of a collection that contain the word "Schulze" and the word "back" without having to know the attribute names in detail. If no selection level is specified, the selection is always made in the topmost collections.

```
Program 13.5: Illustration of "in" in texts
<TAB!
NR,SECTION 1
1 Today S. Schulze is in Hong Kong. Tomorrow S. Schulze is in Beijing.
2 S. Schulze is back.
3 S. Meier lives in Magdeburg.
!TAB>
avec (Schulze back) in SECTION # in based on cil
Result (tab)
NR, SECTION 1
2 S. Schulze is back.
```

Program 13.6: Eliminate	the dot from numbers in a list.
Xl:=1.115 eb 3	<pre># eb: Exponent base = ^ with swapped exponents</pre>
Y:= X zil	
sans WORT="."	
Y::=Y ++text	
Result (tab)	
Χ,	Y 1
3.3483695221	33483695221
10.0451085663	100451085663
30.1353256989	301353256989
90.4059770967	904059770967
271.21793129	27121793129
813.653793871	813653793871
2440.96138161	244096138161
7322.88414484	732288414484
21968.6524345	219686524345
65905.9573035	659059573035
197717.871911	197717871911
593153.615732	593153615732
1779460.8472	17794608472
5338382.54159	533838254159

14 Format with o++o ('3 '4 norm3e norm3m mant rnd)

Analogous to SQL, o++o had initially limited itself to content problems. However, o++o uses much richer structures than SQL. Formatting was then taken over from SVG. Thus one could frame a table, write letters bold or colored, Now we have implemented more possibilities. Numbers with a larger mantissa are hard to read if they are not grouped. Since many different variants are used for number representations in the world, we have chosen representations that do not collide with the existing ones as much as possible and are still more readable.

Grouping of digit sequences ('3 '4)

Following the Swiss model, o++o uses the apostrophe to make numbers more readable. Blocks of three are the most important along with blocks of four.

Program 14.1: Improve readability of several numbers by grouping them.
12345678, 1234567.87654 '3 ;1234567890 '4
Result (tab)
ZAHL, PNUMBER, ZAHL
12'345'678 1'234'567.876'54 12'3456'7890

Such representations are created by the (unary) operations '3 and '4. The user can also set the apostrophe arbitrarily, for example to make telephone numbers more readable:

0176'84'208'408

Operations that generate such are too complicated, so o++o cannot generate them.

Internationally, both the comma and the point (dot) are used as decimal separators and the point and the comma are also used for grouping. We hope to eliminate this inconsistency through these arrangements.

Exponent first notation (norm10m) and norm10e

PZAHL numbers with long mantissa are not to be grasped fast enough, since the more substantial exponent is indicated only at the end of the string. Furthermore, people think in thousands, millions, billions, An exponent 7 or 8 must be recognized as first 10- or 100-million. This way of thinking reflects o++o by allowing only multiples of 3 as exponent. Furthermore, the exponents can also be given first:

6m12.345 (12 million ...)

9m123.4 (123 billion ...)

the old mantissa first notation knows o++o nevertheless. However here also multiples of 3 are used as exponent:

12.3456789e6 (12 million ...)

```
123.456789e9 (123 billion ...)
```

These formatting's can be generated by the one-digit (unary) operations norm3m (for the representation with m) and norm3e (for the latter). The 3 expresses that the exponent is a multiple of 3.

Program 14.2: Improve the readability of numbers by normalizing the exponents.		
12345678.9 norm3m;12345678.9 norm3e		
Result (tab)		
PZAHL, PZAHL		
6m12.3456789 12.3456789e6		

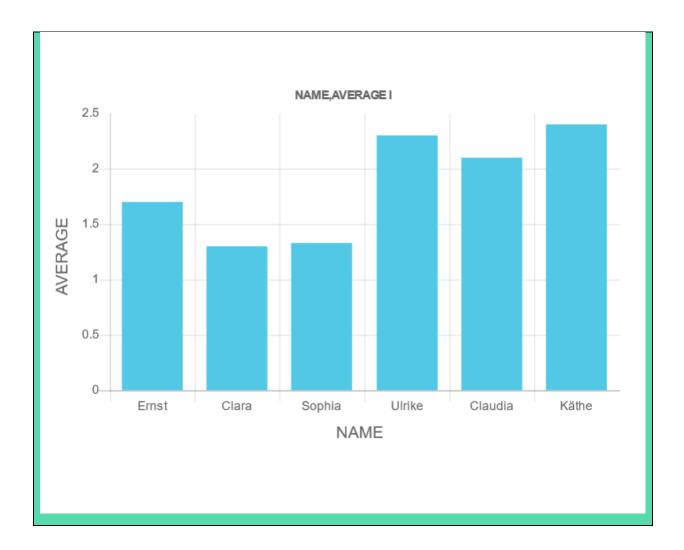
The reduction of the digits (mant)

Most people don't care about the many decimal places when a calculator outputs the square root of 2 or 3 with more than 10 digits. The overload of irrelevant information makes it harder for us to see what is important. Therefore, omitting unnecessary digits (information) is important.

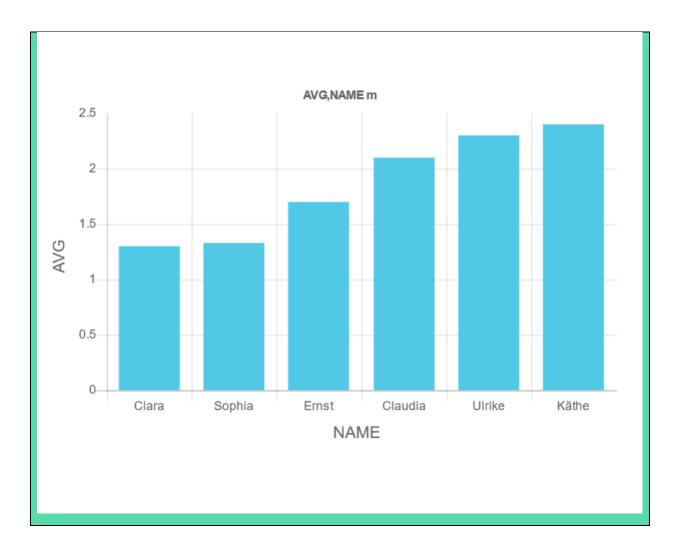
The binary function mant realizes this and converts the result immediately into the m-representation. I.e. the operation norm3m is applied at the same time. The second argument of mant specifies the number of digits desired.

Program 14.3: Reduce the number of digits to four.	
12345678.98765 , 1234567890	
mant 4	
Result (web)	
6m12.34 9m1.234	

You can already see from this example that the mant function is especially important for the cell phone. This makes more columns of a result table visible on the display at the same time.

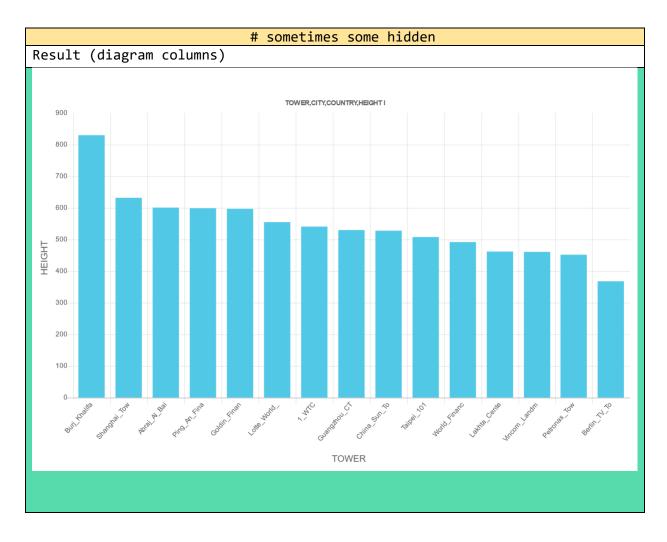

15 Structured diagrams

With o++o you can easily create diagrams. Once you have created an o++o program, you can use the diagram button to open a new browser window that offers a choice of different diagram types. Column charts are certainly the most commonly used. The following rules apply to diagrams:

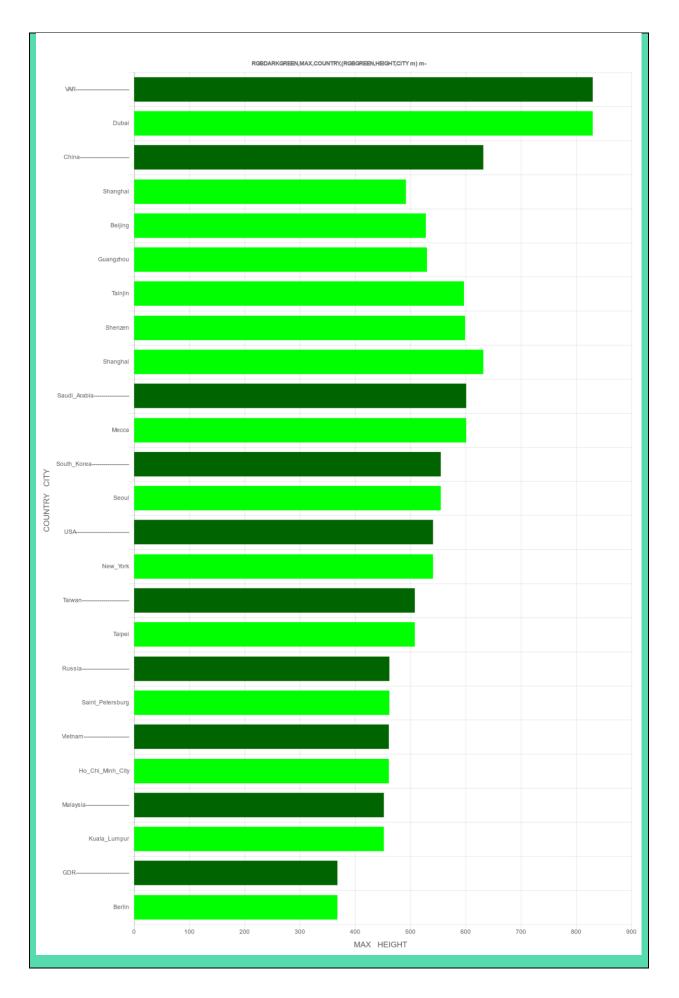

- 1. TEXTs are converted to words by the system by replacing each space with an underscore.
- 2. Numeric columns (ZAHL, PZAHL, RATIO) are displayed as columns.
- 3. The first word column of each hierarchy level is used as the signature for the columns. The other word columns of the level are ignored. If no word column exists, a dash acts as a signature.
- 4. If no RGB values are given, the system sets default colors. If the user wants to choose the colors, each numeric column must have an RGB column in the same level or higher. If an RGB value is placed directly in front of a number column, it determines the color of the column.
- 5. If the table to be displayed starts with the column name TITEL, the content of the column is interpreted as the heading of the entire chart.

We already know that a simple list of numbers is an o++o program that can be represented as a diagram. If there is one more word in each line, it serves as a signature:

Program 1	15.1: Create a column chart with signatures
<tab!< td=""><td></td></tab!<>	
NAME,	AVERAGE 1
Ernst	1.7
Clara	1.3
Sophia	1.33
Ulrike	2.3
Claudia	2.1
Käthe	2.4
!TAB>	
Result	(Diagram- Säulen (Columns))

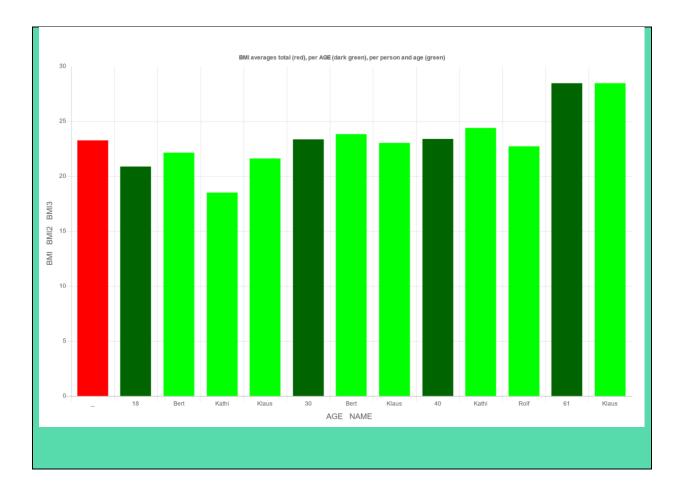


Program 1	L5.2: Sort the columns with signatures by size
<tab!< td=""><td></td></tab!<>	
NAME,	AVG 1
Ernst	1.7
Clara	1.3
Sophia	1.33
Ulrike	2.3
Claudia	2.1
Käthe	2.4
!TAB>	
gib AVG,	,NAME m
Result ((diagram - columns)



towers.tab			
TOWER,	CITY,	COUNTRY,	HEIGHT 1
Burj Khalifa	Dubai	VAR	830
Shanghai Tower	Shanghai	China	632
Abraj Al Bait	Месса	Saudi Arabia	601
Ping An Finance Center	Shenzen	China	599
Goldin Finance	Tainjin	China	597
Lotte World Tower	Seoul	South Korea	555
1 WTC	New York	USA	541
Guangzhou CTF Finance Center	Guangzhou	China	530
China Sun Tower	Beijing	China	528
Taipei 101	Taipei	Taiwan	508
World Finance Center	Shanghai	China	492
Lakhta Center	Saint Petersburg	Russia	462
Vincom Landmark 81	Ho Chi Minh City	Vietnam	461
Petronas Towers	Kuala Lumpur	Malaysia	452
Berlin TV Tower	Berlin	GDR	368

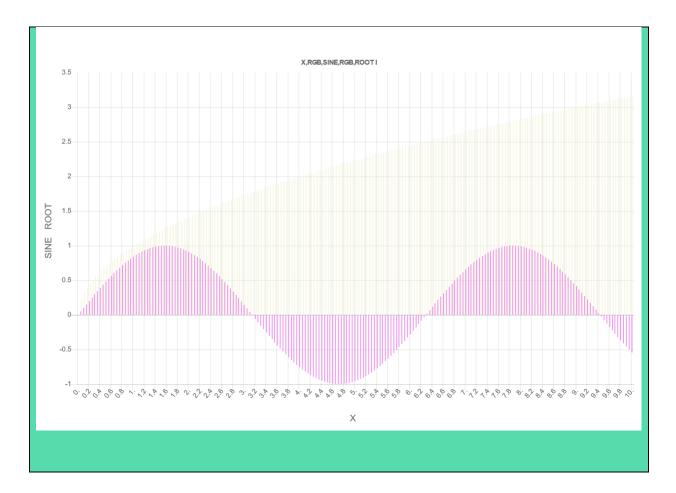
Program 15.3: Represent each tower by a column
towers.tab
TOWER::=TOWER subtext 1!12 # By this shortening of the name are also
in the bar chart all names at the same time
<pre># visible; for space reasons, otherwise</pre>

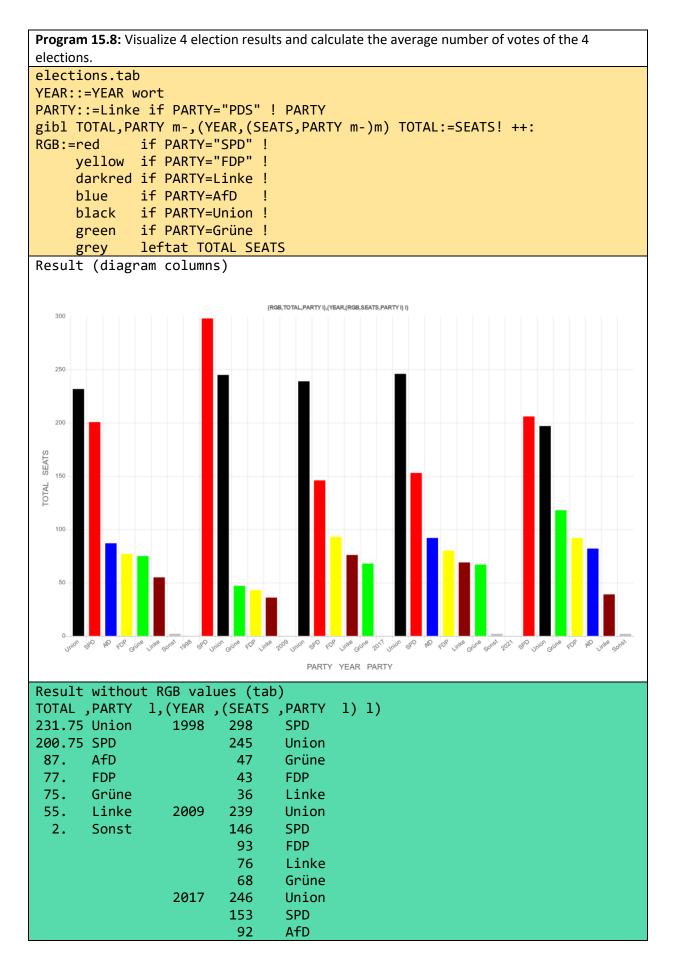


Program 15.4: Represent each tower by a bar and output the bars country by country. Countries with	
the highest towers are to be output first (sort downwards). For each country, sort the towers	
upwards. The countries are to be visually marked off.	
aus towers.tab	
gib MAX,COUNTRY,(HEIGHT,CITY m) m- MAX:=HEIGHT!max	
COUNTRY::=COUNTRY wort + "" subtext 1!30	
RGBDARKGREEN:=darkgreen leftat MAX	
RGBGREEN:=green leftat HEIGHT	
upper part of the result (diagram bar)	



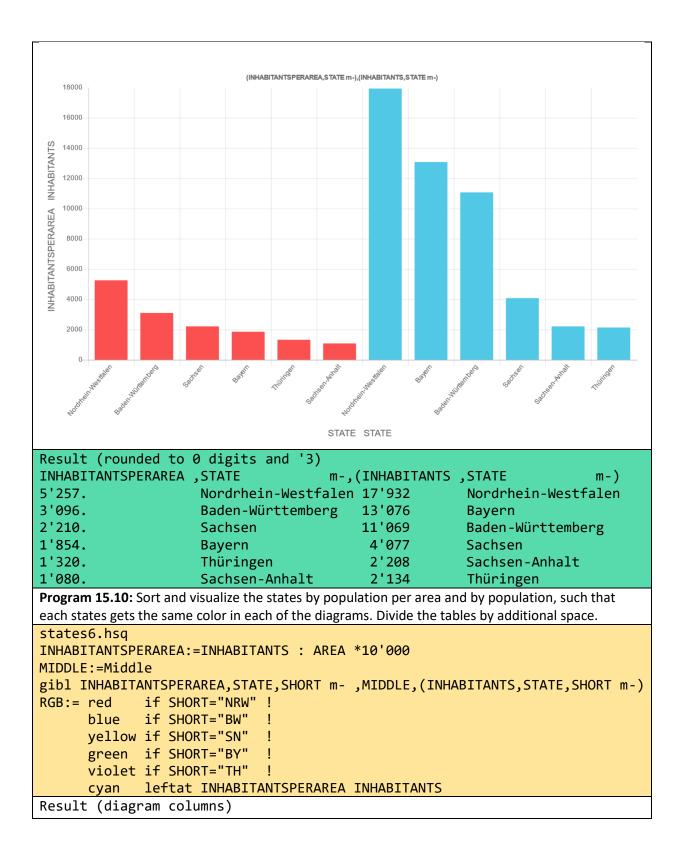
weights.	tabh		
NAME,	LENGTH,	(AGE	,WEIGHT1 1) 1
Bert	1.72	18	66 65
		30	70 71
Kathi	1.7	18	55 52
		40	70 71
Klaus	1.68	18	61 60 62
		30	65 63 67
		61	80 82 79
Rolf	1.78	40	72 70 74
Victoria	1.61	13	51 50
Walleri	1.	3	16 15

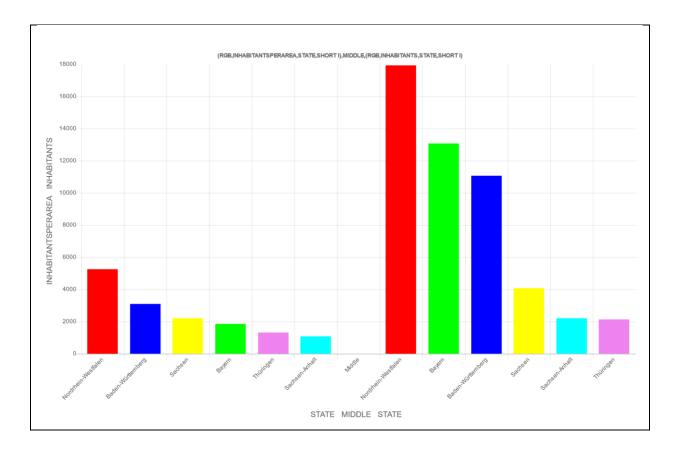

Program 15.5: Calculate BMI averages for all adults, for each age group, and overall. To realize the
first 5 lines EXCEL needs more than 6 worksheets.
aus weights.tabh
avec NAME! AGE>20
gib BMI,(AGE,BMI,(NAME,BMI m) m)
 BMI:=WEIGHT:LENGTH:LENGTH ! ++:
rnd 2
AGE::=AGE wort
RGBRED:=red leftat BMI
RGBDARKGREEN:=darkgreen leftat BMI2
RGBGREEN:=green leftat BMI3
TITEL:="BMI averages total (red), per AGE (dark green), "
 + "per person and age (green)" leftat RGBRED
Result (diagram Säulen (columns))


```
Program 15.6: Compare the weights, lengths and BMI of all persons. Sort the persons by BMI.
aus weights.tabh
TITEL:="BMI in cyan, weight in kg (light blue) and length in dm (orange)"
gib TITEL,(BMI,NAME,WEIGHTAVG,LENGTH m)
    WEIGHTAVG:=WEIGHT!++:
    BMI:=WEIGHT:LENGTH:LENGTH ! ++:
LENGTH::=LENGTH*10
AGE::=AGE wort
RGBLIGHTBLUE:=lightblue leftat WEIGHTAVG
                          leftat LENGTH
RGBORANGE
             :=orange
RGBCYAN
             :=cyan
                          leftat BMI
Result (diagram columns)
```


Program 15.7: Represent 2 functions by bar graphs.				
X1:=010!0.05				
SINE :=X sin				
ROOT:=X sqrt				
X::=X wort				
RGB:=violet leftat SINE				
RGB:=beige leftat ROOT				
Result (diagram columns)				

electi	lons.tab	
YEAR,	(PARTY, SEATS	1) 1
1998	PDS 36	
	SPD 298	
	Grüne 47	
	Union 245	
	FDP 43	
2009	Linke 76	
	SPD 146	
	Grüne 68	
	Union 239	
	FDP 93	
2017	Linke 69	
	SPD 153	
	Grüne 67	
	Union 246	
	FDP 80	
	AfD 92	
	Sonst 2	
2021	Linke 39	
	SPD 206	
	Grüne 118	
	FDP 92	
	Union 197	
	AfD 82	
	Sonst 2	

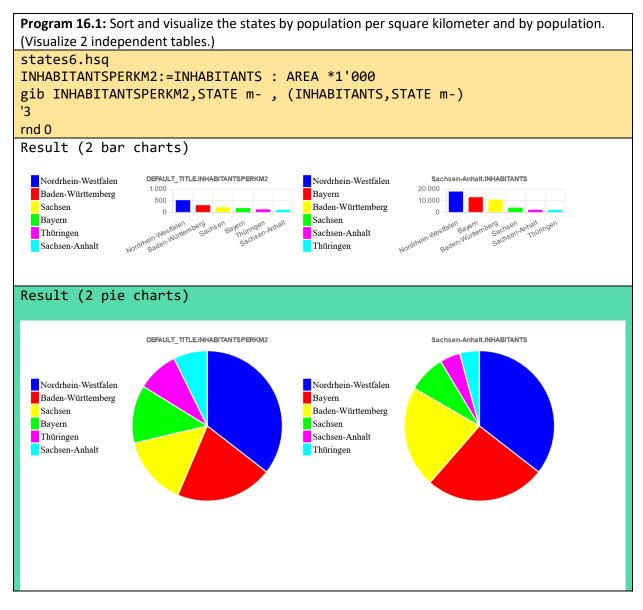



	8	ð FDP
	6	9 Linke
	6	7 Grüne
		2 Sonst
2	2021 20	
	19	
	11	8 Grüne
	9	
	8	2 AfD
	3	9 Linke
		2 Sonst

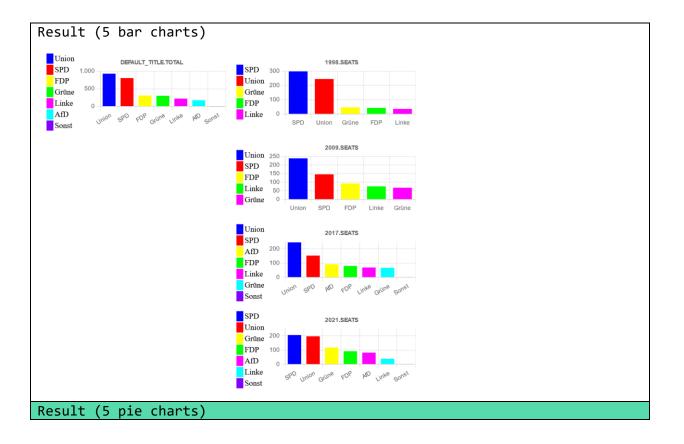
states6.hsq	
STATE, SHORT, AREA,	INHABITANTS 1
Sachsen	SN 18'449.99 4'077
Sachsen-Anhalt	ST 20'451.58 2'208
Thüringen	TH 16'172.5 2'134
Bayern	BY 70'541.57 13'076
Baden-Württemberg	BW 35'751.46 11'069
Nordrhein-Westfalen	NRW 34'110.26 17'932

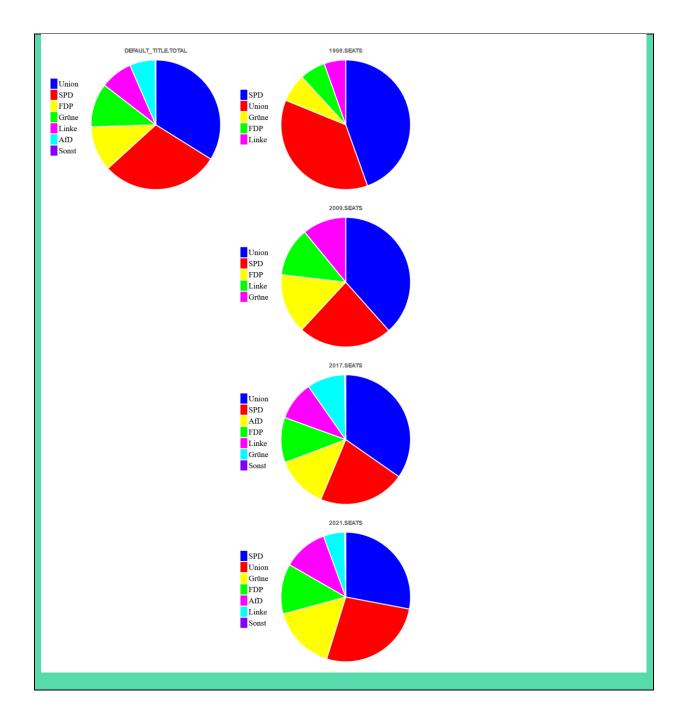
Program 15.9: Sort and visualize the states by population per area and by population. (Visualize 2 independent tables.)

```
states6.hsq
INHABITANTSPERAREA:=INHABITANTS : AREA *10'000
gib INHABITANTSPERAREA,STATE m- , (INHABITANTS,STATE m-)
'3
rnd 0
Result (diagram columns)
```



16 Multiple diagrams


In the previous chapter we saw that a structured table can usually also be represented as a structured chart. Program 15.6 demonstrates that this also works for larger tables. However, pie charts quickly become confusing if a circle represents too many numbers.


Structured tables usually contain several sub-tables. These naturally contain fewer elements than the source table, so in this chapter each sub-table will be represented by a diagram. With multiple diagrams, structured tables are visualized even more directly than with structured diagrams.

In program 15.9, the inhabitants per square kilometer were multiplied by 100,000 to make the columns clearly visible. This adjustment is not necessary for multiple charts.

```
Program 16.2: as 15.8
elections.tab
YEAR::=YEAR wort
PARTY::=Linke if PARTY="PDS" ! PARTY
gib TOTAL,PARTY m-,(YEAR,(SEATS,PARTY m-)m) TOTAL:=SEATS! ++
```


Note the difference between the above program and program 15.8. In 15.8 the sum of the four files is calculated and here the average is calculated. Therefore, the order of the parties in the total balance differs. The order does not change even if an "average" is calculated by division by 4. Here you can see how important it is that the end user must be able to read the program in order to correctly process the information received.

17 Image generation

Since with o++o numbers can be generated in a simple way, one can also generate whole images. For example, XI:= 0 ... 4 generates the numbers $0 \ 1 \ 2 \ 3 \ 4$. You can assign diagrams to these numbers, but to generate an image with o++o you need a list or a set of number pairs (X,Y). The point gets a color if there is a RGB (RED,GREE,BLUE) triple before the X or before the Y value:

(X, RGB, Y)

For RGB values o++o has 3 display options.

English color names

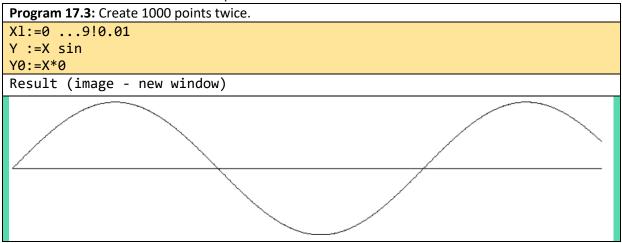
red, silver, cyan, ...

Triples of integers between 0 and 255

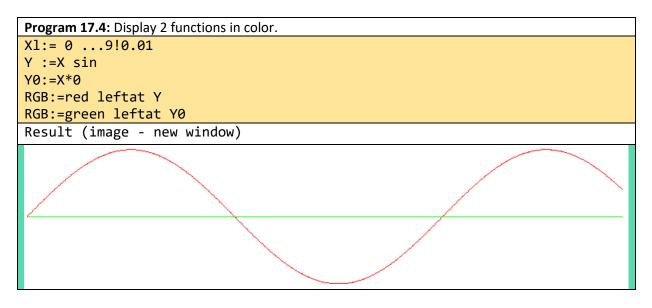
(255,0,0) (=red), (192,192,192) (=silver), (0,255,255) (=cyan)

Number triples between 0 and 1:

(1.,0.,0.) (=rot),(0.752941,0.752941;0.752941)(=silver),(0.,1.,1.) (=cyan)

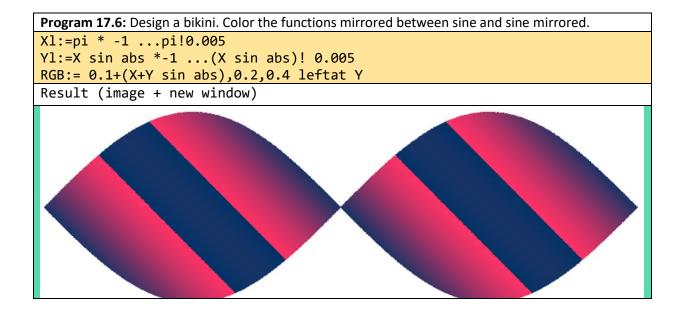

We start with 2 functions, but initially define them only for 10 X values. You have to look closely to see the points:

Progran	n 17.1: Cre	eate 10 poi	nts twice.			
X1:=0	9					
Y :=X	sin					
Y0:=X*	0					
Result	(image	- new w	indow)			
						· · ·
			•			
				·		


By introducing a step size of 0.1, the number of points is increased tenfold.

Program 17.2: Create 100 points twice.	
Xl:= 09!0.1	
Y:=X sin	
Y0:=X*0	
Result (image - new window)	

Now we add another 0 to the step size.


The sine function now becomes red and the X-axis green. The fact that a column name occurs twice (RGB) does not cause any problems at this point.

The fact that it is also possible to create "full images" is first shown by the German flag. You can see that all points that follow a color value are output in this color. Thus, only three color values are needed for the German flag. The term pixel has lost its meaning here or must be redefined.

Program 17.5: Generate the German flag X1:= 0 ...9!0.01 Y1:= 0 ...2!0.01 at X =: \$RECTANGLE aus RGB:=gold ,\$RECTANGLE RGB:=red ,\$RECTANGLE+(0,2) RGB:=black ,\$RECTANGLE+(0,4)

Result (image + new window)

18 Image editing

The following programs are all based on the photo of an Indian:

Program 18.1: Display a photo!
inder.jpg
Result (image)

(see above)

Above image takes only 42.2 KByte.

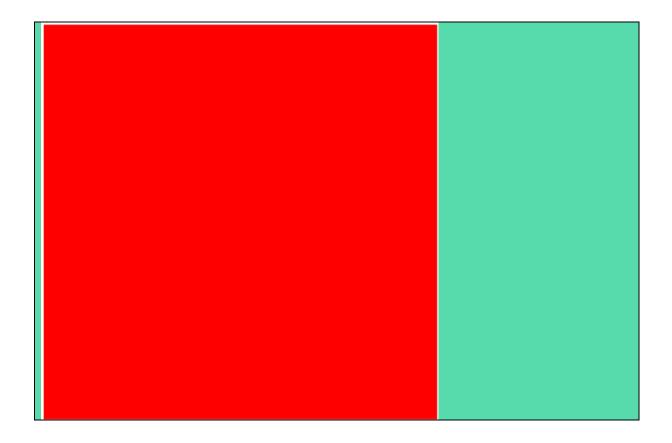
In the following it becomes clear that the file contains 160 thousand records (tuples).

Program 18.2: Count the lines (pixels) of the photo.
inder.jpg ++1 '3
Result (tab)
160'001

Usually, it is not possible to look at all points of an image. Therefore, we only output the first 14 5-tuples in the following.

Program 18.3: Select the first 14 image pixels.
inder.jpg
avec X pos < 15
Result (tab)
X, RGB, Y 1
0. 228,232,220 0.
0. 227,231,219 0.01
0. 227,231,219 0.02
0. 226,230,218 0.03
0. 227,231,219 0.04
0. 228,232,220 0.05
0. 229,233,221 0.06
0. 230,234,222 0.07
0. 229,233,221 0.08
0. 229,234,221 0.09
0. 229,234,221 0.1
0. 229,234,221 0.11
0. 229,233,221 0.12
0. 229,233,220 0.13

Program 18.4: Calculate the extreme values of the coordinates of the image points
inder.jpg
gib XMAX,XMIN,YMAX,YMIN
 XMAX:=X!max XMIN:=X!min
 YMAX:=Y!max YMIN:=Y!min
Result (tab)
XMAX, XMIN, YMAX, YMIN
4.02 0. 3.99 -0.05


You can see here that the photo represents a 4 x 4 square. The X and Y values are therefore between 0 and 4.

Program 18.5: Output the left part of the photo.				
inder.jpg				
avec X pos < 50'000				
Result (image)				

A simple red rectangle can also be created with any photo by simply overwriting any color value.

Program 18.6: Paint the photo red.
inder.jpg
RGB::= red
Result (image-new window)

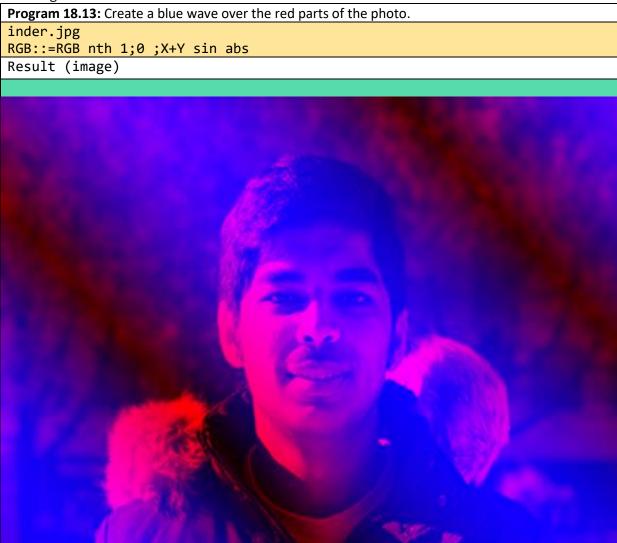
Also, very easy to create the German flag from the photo:

Program 18.8: Hide the head behind a brown bar.	
inder.jpg	
RGB::= brown if 1.5 <x !="" &="" rgb<="" td="" x<2.5=""><td></td></x>	
Result (image - new window)	

Program 18.9: Convert any stronger green to pure green. inder.jpg RGB::= green if RGB nth 2>100!RGB Result (image - new window)

Program 18.10: Convert a color photo into a black-cyan photo.
inder.jpg
RGB::= cyan if RGB ++ <220!black
Result (image - new window)</pre>

Program 18.11: Output the photo including a displacement of the photo.


inder.jpg
Y:=inder.jpg+(8.,0,0,0.)
Result (image - new window)

Program 18.12: Arrange the head of the Indian in a 2*4 rectangle.
inder.jpg
avec X- 2 ^ 2 +(Y - 2.3 ^ 2) <1
=: \$HEAD aus Zl:= 14
W1:= $$HEAD + (0.;0;0;2*Z)$
W1:= \$HEAD + (0.,0,0,2.2) W2:= \$HEAD + (2.,0,0,2.2)
Result (image - new window)
Result (Image - new window)

In the following it becomes clear that the Indian is still clearly visible, although we have only taken over its red part. A blue wave starts at the top right of the following image, regardless of the given colors.

Even though we have only given a few examples here, it should have become clear that with o++o you can create thousands or millions of different images from a single photo.

19 A baker application (CSS)

In this chapter, form questions take up somewhat more space than the content questions of the otto- program. The baker wants to create invoices and then be able to evaluate the collected invoice data. The following program generates the invoice and saves the essential data of all invoices immediately into a file rechnungen22.hsq, which can be re-evaluated immediately after an invoice is created.

```
Program 19.1 Printing invoices for customers and saving them to a file.
$RECHNNR :="25#22"
$KUNDE :="Senioren"
$RECHNVOM :="19.11.2022"
$DATUM :="21.11.2022"
$BEZAHLT :=nein
$BESTELLUNG:= <TAB!
PRODUKT,
              ANZAHL m
Hanfbrot
               6
               6
Baguette
               77
Brötchen
Kürbisbrötchen 20
Partystange
               5
Mischbrot 1 kg 7
Milchbrötchen 26
!TAB>
$FALSCHEPRODUKTE:=begin aus $BESTELLUNG;; gib PRODUKTm
-coll begin aus produkte.tab;;gib PRODUKTm end end
$KUNDEANZ:=begin aus kunden.tab; avec KUNDE = $KUNDE; ++1 end
aus ($KUNDEANZ = 0 | $FALSCHEPRODUKTE ++1>0) dann (($KUNDEANZ=0) dann
"Kunde inkorrekt" ! ("falsche Produkte:" ; $FALSCHEPRODUKTE)) !
    begin
aus $BESTELLUNG,produkte.tab
igib (PRODUKT,STEUER,PREIS,ANZAHL) m
=: $BESTELLUNGGESAMT
aus $BESTELLUNGGESAMT
,absender.tab
,begin aus kunden.tab;avec KUNDE = $KUNDE;gib KUNDENADRESSE
KUNDENADRESSE=NAME, STRASSE, ORT end
GESAMTPREIS := STEUER :100 +1 *PREIS *ANZAHL
gib ABSENDER, KUNDENADRESSE, TABELLEN
    TABELLEN= ZEILEN, ZAHLUNGSBETRAG
    ZEILEN= PRODUKT, ANZAHL, STEUER, PREIS, GESAMTPREIS 1
    ZAHLUNGSBETRAG:=GESAMTPREIS!++
rnd 2
,bankverbindung.tab
BILD:= "bilder/brotraucht.png" at ABSENDER
$L:="Re.Nr: " + ($RECHNNR text)
$M:="Rechn. vom " + ($RECHNVOM text)
$R:="Gerwisch, " + ($DATUM text )
BETREFF:= $L,$M,$R leftat TABELLEN
ZAHLUNGSBETRAG::="ZAHLUNGSBETRAG: " + (ZAHLUNGSBETRAG text) + " €"
tag0 RECHNUNG
FORMAT:=format2.tab
=: $ERGEBNIS
```

aus \$RECHNNR,\$DATUM,\$KUNDE,\$BEZAHLT,\$BESTELLUNGGESAMT gib RECHNNR,DATUM,KUNDE,BEZAHLT,(PRODUKT,ANZAHL,STEUER,PREIS m) m ,rechnungen.hsq gib RECHNNR,DATUM,KUNDE,BEZAHLT,(PRODUKT,ANZAHL,STEUER,PREIS m) m rnd 2 save rechnungen22.hsq aus \$ERGEBNIS end

Result (web) (new window)

Re.Nr: 25#22 R	echn. vom 19.11.2022	Gerwisch,	21.11.	2622	
	PRODUKT	ANZAHL ST		and the second sec	the second second second second
	Baguette	6	7	2.20	14.12
	Brötchen Hanfbrot	77	7	0.34	28.01
	Kürbisbrötchen		7	3.50 0.45	9.63
	Milchbrötchen	26	7	0.43	11.96
	Mischbrot 1 kg	And the second s	7	1.90	14.23
	Partystange	5	7	2.40	12.84
				113.27	SSBETRAG:

After the baker has entered his order data, it is checked whether all product names are also contained in the file products.tab. Then, all data of the order relevant for the costs are summarized in the tab variable \$BESTELLUNGGESAMT. This variable has a schema of the type PRODUCT,TAX,PRICE,ZAHL m. I.e. it contains a whole table. To this data the customer data and the sender are added. The total price is calculated. The invoice requires additional tags so that the data can be formatted in the desired way. The whole invoice is cached in the \$ERGEBNIS tab variable so that the invoice can be added to rechnungen22.hsq before.

The format data has been summarized in the file format2.tab:

Format file format2	.tab from prog	gram 16.1
SELECT,	TYPE,	STYLE1 1
RECHNUNG	div	vertikaleausrichtung:oben
BETREFF	span	rand-links:15mm
MITTE	span	
UNTEN	div	position:absolute
		oben:230mm
		rand-links:10mm
		border-width:6px
		border-style:groove
		border-color:darkgreen
ABSENDER	div	rand-oben:10mm
		rand-links:15mm
		rand-rechts:110mm
		border-width:6px
		border-style:groove
		border-color:darkgreen
BILD	img	position:absolute
		oben:10mm
		rechts:15mm
		border-width:6px
		border-style:groove
		border-color:violet
KUNDENADRESSE	div	rand-links:15mm
		rand-oben:10mm
		rand-unten:10mm
		rand-rechts:110mm
		border-width:6px
		border-style:groove
		border-color:cyan
L	span	border-width:6px
		border-style:groove
		border-color:darkgreen
М	span	border-width:6px
		border-style:groove
		border-color:darkgreen
R	span	border-width:6px
		border-style:groove
TADELLEN		border-color:darkgreen
TABELLEN	div	ausrichtung:rechts
	4 - 4 - 7 7	rand-rechts:10mm
ZEILEN	tabelle	float:right
		rand-oben:10mm
		rand-rechts:10mm
		schriftgroesse:gross
		border-width:6px
		border-style:groove border-color:firebrick
	taballa	
ZAHLUNGSBETRAG	tabelle	float:right clear:both
		rand-oben:10mm
		rand-rechts:10mm
		schriftgroesse:gross
		border-width:6px
		border-style:groove

		border-color:red
GESAMTPREIS		ausrichtung:rechts
		white-space:nowrap
STEUER		ausrichtung:rechts
EINZELPREIS		ausrichtung:rechts
MENGE		ausrichtung:rechts
NAME	span	fett
BANKVERBINDUNG	div	position:absolute
		oben:257mm
		rand-links:15mm
		border-width:6px
		border-style:groove
		border-color:darkgreen

For the calculation below, the image (the .png file) and the format file have been replaced with format.tab:

Backhaus Magdeburg Inhaber: Manuel Schmidt Breiter Weg 128 391 Magdeburg Tel: 0391 22444 e-mail: backhausschmidt@web.de Steuer-Nr. 103/2662/08839

Landgasthof Biederitz Möser Str. 27 39175 Lostau

Re.Nr: 18#22 Rechn. vom 19.10.2022 Gerwisch, 21.10.2022

PRODUKT	ANZAHL	STEUER	PREIS	GESAMTPREIS
Baguette	6	7	2.20	14.12
Brötchen	77	7	0.34	28.01
Hanfbrot	6	7	3.50	22.47
Kürbisbrötchen	20	7	0.45	9.63
Milchbrötchen	26	7	0.43	11.96
Mischbrot 1 kg	7	7	1.90	14.23
Partystange	5	7	2.40	12.84

ZAHLUNGSBETRAG: 113.27€

Bankverbindung Kontoinhaber: Manuel Schmidt DE68 8106 3238 7777 7764 66 Volksbank Harzer Land

The same output is indicated with 2 background colors for demonstration purposes:

Backhaus Magdeburg Inhaber: Manuel Schmidt Breiter Weg 128 391 Magdeburg Tel: 0391 22444 e-mail: backhausschmidt@web.de Steuer-Nr. 103/2662/08839

Seniorendomizil Magdeburg Vechelder Weg 10 39175 Biederitz

Re.Nr: 25#22 Rechn. vom 19.11.2022 Gerwisch, 21.11.2022

PRODUKT	ANZAHL	STEUER	PREIS	GESAMTPREIS
Baguette	6	7	2.20	14.12
Brötchen	77	7	0.34	28.01
Hanfbrot	6	7	3.50	22.47
Kürbisbrötchen	20	7	0.45	9.63
Milchbrötchen	26	7	0.43	11.96
Mischbrot 1 kg	7	7	1.90	14.23
Partystange	5	7	2.40	12.84

AHLUNGSBETRAG: 113.270

Bankverbindung Kontoinhaber: Manuel Schmidt DE68 8106 3238 7777 7764 66 Volksbank Harzer Land

The file rechnungen22.hsq can be evaluated after each invoice creation for example with the following short program. Conditions could be inserted before the gib:

Program 19.2: Calculate total and monthly sales for each customer and product.

rechnungen22.hsq MON:=DATUM text subtext 4!2 gib UMSATZ,(KUNDE,(UMSATZ,(MON,UMSATZ m)m)m), (PRODUKT,UMSATZ,(MON,UMSATZ m)m)m UMSATZ:=ANZAHL*PREIS +% STEUER ! ++ rnd 2

Result (tab)

UMSATZ ,	(KUNDE ,	(UMSATZ2,	(MON,	UMSATZ3	1) 1) 1),(PRODUKT		(MON	UMSATZ5	1) 1)1
· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	<u> </u>			, ,	<u> </u>		l) l)l
2066.10	AFF	254.21	11	195.42	Baguette	656.77	10	14.12	
			12	58.79			11	157.72	
	Backschwein	773.03	11	210.23			12	484.92	
			12	562.80	Brötchen	200.82	10	28.01	
	Landgasthof	113.27	10	113.27			11	107.32	
	Senioren	925.58	11	634.88			12	65.48	
			12	290.70	Brötchen belegt halb	231.01	11	120.05	
							12	110.96	
					Hanfbrot	827.65	10	22.47	
							11	554.26	
							12	250.92	
					Kürbisbrötchen	28.89	10	9.63	
							11	19.26	
					Milchbrötchen	35.89	10	11.96	
							11	23.93	
					Mischbrot 1 kg	46.56	10	14.23	
							11	32.32	
					Partystange	38.52	10	12.84	
							11	25.68	

20 Appendix A: List of operations and keywords of o++o

Most of the known operations have an arity. The square root, for example, requires only one input value or argument - this is usually a number. In the o++o data model, this can also be a list of numbers. Then the square root is taken from each of the numbers. The list is then considered to be **one** input value, even though it may contain ten or even ten thousand numbers. That is, sqrt remains unary even in this case.

In the o++o syntax the sqrt symbol must follow the argument (postfix). This means that no additional parentheses are required. It is not allowed to write sqrt([2 4 7]) in o++o. But instead, you can use [2 4 7] sqrt

or also 2 4 7 sqrt

•

In both cases you get the same result. You can even apply sqrt to any tabment.

Another example is the addition. The + operator is even better known than the root operation. It has arity 2, which means it requires two input values. The addition is binary. The application of the wrong number of arguments leads to a syntactical error and a corresponding error message.

3 + as well as 3 4 + lead to error messages. In the term

3 + 4

3 is the first argument and 4 is the second input value. Again, a list or other tabment can be used as the first argument. The operation and the second argument are then applied to all elements of the list/table.

137+4

results in

5711

Here and in many other operations the type of the result corresponds to the type of the first input table. So the above result is also a list of numbers. Binary operations are always written between the two input tables in o++o. You can also see it that they have to appear after the first input table like the unary operations. The same applies to three-digit operations in o++o. "!" is used as a separator between the second and third input values.

Hadmersleben subtext 4!5

for example, has the result:

mersl

The first input value is "Hadmersleben". The second input value (4) specifies the position of the initial letter of the partial word and the third input value (5) specifies the desired length.

5 if X>3 ! 6

also requires 3 input values (here: the 5, a truth value, and the 6). If we replace X by 10, the condition is fulfilled and the improved "if-then-else" operation returns 5. For X=1, however, the value 6 results.

In the following, the input and output data are illustrated once again using typical examples.

(first) Inputtabment	unary operation		Outputtabment
pi	sin	results in	0.
149	sqrt	results in	1. 2. 3.
149	++:	results in	4.66666666666

123456789 '3 results in 123'456'789

First input tab	binary operation	second input tab		Outputtabment
7	+	8	results in	15
7.	+	8	results in	15.
153	+	4	results in	597
153	+	1.2	results in	2.2 6.2 4.2
153	+	378	results in	4 12 11
153	+	37	not defined	
7 9	divrest	3	results in	2,1 3,0

First input tab	ternary operation	second input tab		third input tab		Outputtabment
"Georg Cantor"	subtext	1	!	5	results in	George
5	if	3=4 (no)	!	6	results in	6
1		2.9	!	0.5	results in	1. 1.5 2. 2.5
1	X	2	!	4	results in	1212

At this point it should be noted that in many cases the result of the previous line counts as the first input value of an operation:

marks.tab

++:

gives the average of all numbers that occur in the first line marks.tab. marks.tab is the input of ++: The program

xx.tab

+ 2

adds 2 to each number in table xx.tab. xx.tab is the first input table and 2 is the second. In an analogous way extracts

names.tab

subtext 3!4

from each text value (TEXT or WORT or ONR) of names.tab a text of length 4 starting at the third position. Here the ternary subtext operation has the input tabs names.tab, 3 and 4.

In an assignment or condition several operations can be applied one after the other. If all operations are unary (one-line), then each corresponding one-line term has the form

tbt op₁₁ op₁₂ op₁₃ ... op_{1n}

or more concretely:

1 2 3 sin abs sqrt ++text

If all operations are binary (two digits), the form is

 $tbt_1 \, op_{21} \, tbt_2 \, op_{22} \, tbt_3 \, op_{22} \, tbt_4 \, ... \, op_{2n} \, tbt_{n+1}$

or more concrete

123+4*5-9

Terms with only 3 digit operations are certainly rare. Here is just a constructed example:

Operati	Notatio	Examples	Meaning
on	n:		
symbol	Input→		
- ,	Result		
	type		
	3 F -		

Magdeburg subtext 2!6 subtext 2!2 results in gd

If brackets are set, they must be calculated first:

abcdefghijk subtext 2!(2+3) results in bcdef

abcdefghijk subtext 2!2+3 on the other hand results in bc

(bc + 3 equals bc)

If you are not quite sure, you can put brackets as a precaution.

+ 3

is not a term, because the operation + has no first input value here. Therefore, an error message would appear. However, this would not be true if the above code were not on the first line. The value of the preceding line is then the first input value of + and 3 is then the second input value.

In the following, the designations below are used:

num = ZAHL or PZAHL or RATIO or BAR (|) or stroke list

nonum = TEXT or WORT or ONR

mixe = text and number occur in one column

tbt stands for any tabment type

For the types, we often specify only those that are also changed by the operation.

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
+		1 1 3 + 2.1 results in 3.1 3.1 5.1 xy ab + de results in xyde abde	Addition of numbers and connecting text
*	tbt1 * num→ tbt1	2 3 5 * 2 results 4 6 10	Multiplica tion
-	tbt1 - num-→ tbt1	3 - 2 results in 1 1'234 - 345 Results 889	Subtractio n
:	tbt1 : num→ tbt1	3:4 results in 0.75	Division
++	tbt ++→ num	2 3 6 ++ results in 11	Total
**	tbt **→ num	1 3 5 ** results in 15	Product
		20 5 4 results in 11	Multiple subtractio n
::	tbt ::→ num	64 2 2 :: results in 16	Multiple Division
++:	tbt ++:→ PZAHL	1 2 3 2 ++: results 2.0	Average
++1	tbt ++1→ NUMBER	3 4 7 9 ++1 results in 4	Quantity
++text	tbt ++text → text	[ab cde fg] ++text results in abcdefg	Connect to text
++texts ep		ab cde fg ++textsep ";" yields "ab;cde;fg"	combine to text with inclusion of a separator

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
,	tbt1,tb t2→ tbt	1 2,3 results in COUNT1,COUNT 1 3 2	Pairing
;	tbt1;tb t2→ tbt	2.3 * 2 equals 4.6 2;3 *2 gives 2.6	also a pair formation. but ; separates sharper than ,
, ,	tbt1,,t bt2 → tbt	1 3 ,, xx yy results in 1 xx 3 yy	Multiple pair formation
=	tbt1,tb t2→ BOOL	1 = 2 results in si	Equality
<=	tbt1 <= tbt2→ BOOL	2 <= 2 results si	Less than or equal to
>=	tbt1 >= tbt2→ BOOL	2 >= 4 results no	Greater than or equal to
+coll	coll1 +coll coll2→ coll1	<pre>{{1 2}} +coll {1} results in {{1 1 2 }}</pre>	"set- theoretic" union
-coll	coll1 - coll coll2→ coll1	[2 4 3 2] -coll [2] results in 4 3 2	Set difference
*coll	coll1 *coll coll2→ coll1	<pre>{1 2 3} *coll {4 5} results in ZAHL,ZAHL m 1 4 1 5 2 4 2 5 3 4 3 5</pre>	Cartesian product
:coll	coll1:c oll	{1 2 3}:coll [2 3 4] results in	Intersecti on

Operati		Examples	Meaning
on symbol	n: Input→ Result type		
	coll2→ coll1	{2 3}	
*1		car *1 3 results in car car car or xx.tab *1 3	Multiply element to list
*mat	coll1 *mat coll2→ coll	(1,2) *mat [2 3] results in 8	Matrix multiplica tion
-1mat	coll - 1mat→ coll	<tab! X1,X2,X3 l 1 0 2 0 2 0 0 0 8 !TAB> -1mat results in X1, X2, X3 l 100.25 -0. 0.5 -0. 00. 0.125</tab! 	inverse matrix
&	BOOL & BOOL -> BOOL	si & no results in no	Conjunctio n (logical and)
	BOOL BOOL -> BOOL	1=1 1=2 results in si	Disjunctio n (logical or)
&&	coll1 &&→ BOOL	si,66,si && results si	for all
	coll1 → BOOL	1=2,no results no	it exists
1	ZAHL 1 -> BAR1	5 l results in 	Transfer numbers into tally sheets (for kindergart en)
••	number1	1 4 results in	from to

Operati on symbol	n: Input→ Result	Examples	Meaning
	type number2 -> number1	1234	generate
••••		0 6!2 results in 0 2 4 6	from to ! step
x	number1 number2 ! ZAHL -> number1 →	1x 6!3 results in 5 3 2	Random numbers fromx to ! number
'3	tbt '3→ tbt	1234567890 '3 results in 1'234'567'890	format in blocks of 3
'4	tbt '4→ tbt	12345.67898 '4 results in 1'2345.6789'8	format in blocks of 4
^ hoch	tbt ^ num→ tbt	4 ^ 1/2 results in 2. 10 *l 4 to the power of (03) results in 1 10 100 1000	to the power of
abs	tbt abs→ tbt	-3 7 abs results in (tabh) 3 7	absolute amount
aggseg	tbt aggseg op ! NAME	[(1,2) (3,4)] aggseg ++ ZAHL results in: ZAHL, ZAHL 1 1 2 3 4 4 6	vertical op- aggrgation for all NAME- collection s
aggsegs		<pre>[(1,2) (3,4)] aggsegs ++ results in ZAHL, ZAHL 1</pre>	In all collection s will be verical

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
		1 2 3 4 4 6	aggregated
arctan	tbt arctan -> tbt	1 arctan gives 0.785398163397 (= pi:4)	arcus tangent
at		GROSS:=NET +% 19 at NET	place new column to the right of the specified
aus	tbt1 from tbt2 → tbt2	aus rivers.tabh	New start of a program
avec	tbt1 avec bed → tbt1	rivers.tabh avec LENGTH >800	Selection (with)
comp	tbt name→ tbt	<tab! NAME,FIRSTNAME,PLACE Mill Paul Halle !TAB> comp PLACE results in PLACE Halle (see also nth)</tab! 	Component
cos	PZAHL cos→ PZAHL	pi cos results in -1.	Cosine
cut	TEXT cut ZAHL -> List	qwertzuiop cut 3 results in qwe rtz uio p	cut a text in a list of text of equal length
cutspli t		"qw ert zuio" cutsplit 3 results in qw ert zui o	cut a text in pieces of equal length, where the cut is

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
			earlier made when a blank exists
det	coll det→ coll	<tab! X1,X2,X3 l 1 0 2 0 2 0 0 0 8 !TAB> det results in 16.</tab! 	Determinan t
div	NUMBER di∨ NUMBER → NUMBER	11 div 5 results in 2	integer division
divrest		11 divrest 5 results in 2,1 (not 2.1)	integer division with remainder
euler	euler	euler ^ 3 ln results in 3.	Euler's constant
falls	term falls cond → tbt1	1 if 4=4 results in 1? 1 falls 4=3 results in empty optional value	if with 2 input values, in connection with gib certain joins can be expressed in this way
for		X:= 100 for X pred *1.03 at Y	precedes the second term of a recursive assignment
foronr		X:=firstonr 100 foronr X pred *1.03 at Y	for for onr recursion

Operati on symbol	n: Input→ Result	Examples	Meaning
gib	type tbt1 gib schema → tbt2	aus students.tab gib FAC,(LOC,NAMEm)m	Restructur ing of a tabment regarding given schemas and aggregatio ns
gibl	tbt1 gibl schema -> tbt2	gibl X,Ym- m results in tabment with the scheme X,Yl l with same content as gib	Is just a shorthand notation for 2 gib statements
giball	tbt1 giball scheme2 → tbt2	giball X Y l List of all X and Y subtab segments (any depth); corresponds to//X Y of XPath	Extraction of all correspond ing values
gibtop	tbt1 gibtop scheme2 → tbt2	gibtop Xl corresponds to: t/X: List of all X-Subtabmente of t, from the highest level of t.	Extraction of the top values
hori	tbt hori name→ tbt'	<tab! SUBJECT,NOTE m Ger 1 Phy 2 Ma 1 !TAB> hori SUBJECT results in GER, MA, PHY 1 1 2</tab! 	Arrange data horizontal ly
if		1 if 1=2 ! 3 results in 3	ternary operation that replaces "if_then- else" and "case".
igib	tbt1 igib scheme2 → tbt2	students.tab,faks.tab igib FAK,DEAN,NAMEm m	Join with restructur ing
in	tbt1 in tbt2→	"1 2 1" in "1 2" results in si	Every word of the

-		Examples	Meaning
on symbol	n: Input→ Result type		
	BOOL	"1 2 3" in "1 1 2" results no	left side is word of the right side
inmath	tbt1 inmath tbt2→ BOOL	<pre>[1 3] inmath [1 4 3] gives si [3 1] inmath [1 4 3] gives no 2 inmath {6 7 2} gives si</pre>	mathematic al inclusion; the left hand side determines , whether we have a list, set or bag inclusion
keys	tbt1 keys tbt2→ tbt1	<pre>Xl:= 140 Y:=X*X gib X,Y m keys [7 34] results in tab format: X, Y m 7 49 34 1156 or keys [yy,[y2] zz]</pre>	Efficient selection in sets or lists
keyslik e		<tab! NAME, PLACE m Clara Oehna Claudia Dallgow Sophia Dallgow !TAB> keyslike ["*ia"] results NAME, PLACE m Claudia Dallgow Sophia Dallgow</tab! 	efficient selection in sets or lists with partial matching
leftat		GROSS:=NET +% 19 leftat NET	place new column to the left of the specified one
like	term like "term?* "	Hadmersleben like "?admers*" results si '?': represents a character '*': represents 0 or more characters	similar to

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
	→ BOOL		
linreg	tbt linreg → num,num	<tab! PRICE,SOLD 1 20 0 16 3 15 7 16 4 13 6 10 10 !TAB> linreg results in 19.73214,-0.98214</tab! 	linear regression
list	tbt list -> tbt	pi,euler,3.14 list results in (tab format) 3.14159265359 2.71828182846 3.14	A tuple is converted into a list
lists		<pre>Xl:= 1 2 lists 2 results (tabh format) Xl l 1 1 1 2 2 1 2 2</pre>	Generate a list of lists of specified length
ln	tbt ln → PZAHL	euler ln results in 1.	natural logarithm
log	tbt1 log tbt2→ PZAHL	100 log 10 results in 2.	general logarithm
lower	tbt lower→ tbt	AsdRRGee34 lower results in asdrrgee34	turn into lowercase letters
max	tbt max→ num	12.21,2,Hello max results in 12.21	Maximum of all numbers
median	tbt median → num	1 2 4.9 median results in 3.0	Median

on	Notatio n: Input→	Examples	Meaning
symbol	Result type		
min	tbt min→ num	12.21,2,Hello min results in 2	Minimum of all numbers
minus	tbt minus - > tbt	1 -2 4 minus results in -1 2 -4	negate any number
natsel	tbt natsel -> tbt	students.tab,exams.tab avec NAME=Ernst natsel exams then also contains only exams from Ernst	natural selection (regarding common column names)
no	no→ BOOL	no si results si	Truth value false correspond s to the answer no (Spanish no)
not	BOOL not→ BOOL	si not results no	Negation
nth	tbt nth NUMBER → tbt'	1 3 5 nth 2 results in 3	nth component
nthpred	nthpred	Xl:= 1 2 3 4 Y:= X nthpred 2 results in X,Y? 1 1 2 3 1 4 2	n-th predecesso r
nthsucc	nthsucc	Xl:=2 4 7 4 3 4 4 avec X nthsucc 2=4 results in (tabh) 4 4 3	n-th successor
nthzahl	tbt nth number NUMBER → tbt'	"2023.03.26" nthzahl 3 results in 26	nth number in a text
onr	tbt	1 3 5.2 "4.5.5" onr	Conversion

Operati on	n:	Examples	Meaning
symbol	Input→ Result type		
	onr→ tbt	results (tabh): 1 3 5.2 4.5.5	to o++o number
onrs	tbt onrs name ! element → tbt'	<tab! X,Ym m k y z y w !TAB> onrs OTTO!k results X, (OTTO, Y m) 1 k 1 z 2 y 2.1 w</tab! 	generates o++o numbers in a table; this is an important component of BOM explosion.
permuta tions		2 4 9 permutations results in (tabh) ZAHL1 1 2 4 9 2 9 4 4 2 9 4 9 2 9 2 4 9 4 2	"permutati ons" is an abbreviati on for the program: Xl:= 2 4 9 lists 3 avec Xm= {2 4 9}
pi	pi) PZAHL	CIRCULAR AREA:=R*R*pi	Circle number
poly	num poly list→ num	3 poly [1 2 3] results in 18	Polynomial
pos	Name pos→ NUMBER	avec X pos < 10	Position
pos-	Name pos-→ NUMBER	avec X pos- > 5	Position from behind
pred	Name pred→ term	X:= 100 for X pred *1.03	Predecesso r
preds	preds → tbt		Abbreviati on of X pred, Y pred, …
primo	tbt	1 3;4;7 8 9	Select

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
	primo - > tbt	primo results in (tab) 1 4 7	first element of each collection
pzahl	tbt pnumber → PZAHL	1/5 6 9.7 pzahl results in (tabh) 0.2 6. 9.7	Conversion to a PZAHL
pzahl1d e		"Today I get 356.88 euros and not 66.8 ." pzahl1de results in 356.88	First PZAHL of a German text
rat	ZAHL rat ZAHL→ RATIO	<tab! X,Y1 1 1 2 3 !TAB> Z:= X rat Y results in X,(Y, Z 1) 1 1 2 1/2 3 1/3</tab! 	Conversion of two numbers into one RATIO number
ratio	num ratio→ RATIO	1/5 6 9.7 ratio results in (tabh) 1/5 6/1 97/10	Conversion to rational number
rename	tbt rename Name1 ! name2→ tbt'	rename X!Y	Renaming column names
rest	NUMBER rest NUMBER → NUMBER	13 rest 5 results in 3	Remainder for integer division
rnd	PZAHL rnd ZAHL→ PZAHL	17,678 3.45 zz 8 rnd 1 results in 17.7 3.5 zz 8	round
route	tbt route→ tbt	<tab! X,Y m 0 0</tab! 	Generate straight line

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
		1 1 0 1 !TAB> route generates 2 lines from (0,0) to (1,1) and from (1,1) to (0,1)	sequence from point sequence
sans	tbt sans cond → tbt	sans LOC=Magdeburg sans Magdeburg sans: without the specified struples	Selection (without)
satzl	TEXT satzl TEXTl	"It's great. Great. Tomorrow we celebrate." satzl results (tabh-format): SATZl It's great. Great. Tomorrow we celebrate.	List of sentences
seg	NAME seg→ term	<tab! X,Y,Z,U,Vl l 1 2 3 4 5 6 6 7 8 9 10 11 !TAB> SUM:= Z seg ++ results in (tabh) X,Y,Z,SUM,U,Vl l 1 2 3 7 4 5 6 6 7 8 17 9 10 11</tab! 	segment from position NAME
sepl	constant list, useful to understa nd exactly the operation cil (split into words)	"." ";"","" ""!""?""("")""@""#""\n""-"""	all separators used in the cil operation
si	si → BOOL	si & no results in no	Truth value true (answer yes (=si))
sin	PZAHL sin→	3.14159 sin results in	Sine function

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
	PZAHL	2.65358979335e-06	
split	TEXT split "sep"→ TEXT1	<pre>Xl:= "Brati,Novi Sad, Belgrade" split "," result (ment): <tabm></tabm></pre>	Decompose text
splitfu ll	tbt splitfu ll→ WORTl	<pre>"We live in Halle, a city in Saxony-Anhalt". splitfull results (ment) <tabm> We live in Hall a City in Saxony Anhalt </tabm></pre>	List of all words, where the following separators are given: " " , ; - / ! ? () @ # "\n" (end of line)
splitfu llm	tbt splitfu llm→ WORTm	"We live in Halle, a city in Saxony-Anhalt". splitfullm results in (tabh) WORTm anhalt hall saxony city we one in live	<pre>Set of all words, where the following separators are given: " " . ,; - / ! ? () @ # "\n" (end of line)</pre>
splitse p	TEXT splitse p "sep"→ TEXT1	<pre>Xl:= "Brati,Novi Sad, Belgrade" splitsep "," result (ment): <tabm></tabm></pre>	Decompose text, not deleting the separator
sqrt	num sqrt→ PZAHL	4 sqrt results in 2.	Square root

Operati on symbol	Notatio n: Input→ Result	Examples	Meaning
	type		
mad streu	tbt scatter → PZAHL	[1 2 5 3 5 1] mad results in 1.5	Scattering
subtext		aBCdE subtext 2 ! 3 results in BCd	Subtext (substring)
subtext 2		aBCdEfgh subtext2 "B"!fg results in CdE	Partial text of the first text that lies between the other two given texts.
succ	Name succ→ term	NOTEl:= 3 1 2 1 avec NOTE >NOTE succ results in NOTEL 3 2	Successor
tag		LOCATION:=Magdeburg STREET:=Beims tag ADDRESS!LOCATION,STREET results (metadata) TABMENT ! ADDRESS ADDRESS ! LOCATION,STREET LOCATION ! WORT STREET ! WORT	enclose data of a schema with a tag
tag0	tbt tag0 name→ tbt'	<pre>11 13 tag0 XX results (ment) <xx> 11 13 </xx></pre>	Put a tag around the entire tabment
tan	num tan → PZAHL	3.14 tan results in -0.00159265493641	Tangent function
text	mixe text→ TEXT	3.14 ttt 8 text results in TEXT1	Transform any elementary type to

Operati on	Notatio n:	Examples	Meaning
symbol	Input→ Result type		
		3.14 ttt 8	TEXT.
textend	textend NUMBER	asdfgh text end 4 results fgh abcde textend -2 Results de	subtext counted from back
textind ex	text mixe text→ NUMBER	"Today is Tuesday." text index Di results in NUMBER 11	Position
time	time→ PZAHL	time could result: 1.557021	system time (only the difference between two such times is significan t for efficiency considerat ions)
trim	text trim) text	" Hi o++o " trim results (ment) <tabm>Hi o++o</tabm>	remove spaces at the back and front
tup	NAME tup→ term	<tab! X,Y,Z,U,Vl l 1 2 3 4 5 6 6 7 8 9 10 11 !TAB> SUM:= Z tup ++ Results in (tabh) X ,Y ,Z ,SUM ,U ,Vl l 1 2 3 18 4 5 6 6 7 8 38 9 10 11</tab! 	a whole struple from position NAME
ultimo	tbt ultimo -> tbt	1 2 4, 5 ultimo results in (tab) ZAHL1, ZAHL 4 5	from each collection preserve only the last element
untag0	tbt	X:=1	remove the

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
	untag0 → tbt'	untag0 results in NUMBER 1	outermost day
upper	text upper→ text	1.2,aW upper results (tab-format) PZAHL, WORD 1.2 AW	convert to uppercase
varianc e		[1 2 4 6] variance results in 4.91666666667	Variance
verti	tbt verti coll:=t up→ tbt'	verti MON,XX l:=JANDEC verti SUBJECT,MARKl l:= PHYlMATHl	Arrange data vertically
vlists	tbt vlists ZAHL→ tbt l	variable-length lists; the operation generates the same as "lists" except that all shorter lists also appear in the result.	Variable length lists
weg	tbt weg names → tbt'	<tabh! X,Ym m 1 2 3 4 5 !TABH> weg Y results (tab-format) Xm 1 4</tabh! 	Omitting columns
wort	tbt wort→ wort	"I'm good.So are you." word results in WORT I_am_good.You_too.	Convert to words
zahl	num zahl→ ZAHL	"12" zahl results in 12 3.14 zahl results in 3	Conversion
zahltri	text	DAY, MON, YEAR: =	The first

Operati on symbol	Notatio n: Input→ Result type	Examples	Meaning
р	zahltri p -> Triples of numbers	26.03.1963 zahltrip results in DAY,MON,YEAR 26 3 1963	3 numbers of a text
zil	tbt zil→ tbt'	123,Today zil results in (tabh) 1 2 3, H e u t e	List of all characters (letters+d igits+ special characters) (zi Chinese: character)
zahlrat io		33/7 zahlratio results in 4 5/7	Convert to integer part and real fraction
zahl1de		"Today I get 66,356.11 euros". zahl1de results in 66356	extract first number from a German text

21 Appendix B: Grammar

o/		
%start		
%token	-	abs
%token	ADDAGGS	addaggs &&
	ALLSEGS	
%token		allsegs &
%token		a '3
%token		'4
	ARCTAN	arctan
%token		at
%token		atom
%token		aus
	AUSRUFE	!
%token		avec
%token		++:
%token		
%token		1
%token		hoch ^
%token	BEGIN	begin
%token	BOOL	0
%token	CART	*coll
%token	COLL	1 m b 1- m- b- a ?
%token	COMMA	ر
%token	COMP	comp
%token	CONTENT1	
%token	CONTENT2	
%token		COS
%token		++1
	COUNTSTROKE	++
	CREATE	create
%token		CSV
	CSVTABLE	
%token		cut
	CUTSPLIT	cutsplit
	DCOMMA	(ر
%token		•••
%token		••
%token		X
%token %tokon	DELETE	defop delete
%token		det
%token		:
	DIV DIVBIGINT	div
	DIVDIGINI	::
	DIVREST	 divrest
	DOLLAR	\$
	DOLLAR2	\$\$
%token		ΨΨ • • • •
%token		end
%token		-
%token		; "\n"
%token		=

%token	EQ2	==
%token	EOUI	<->
%token	-	euler
%token		
%token		-coll
%token		if
%token		float
%token	FUNNAME	myop
%token	GE	>=
%token	GE2	>=>=
%token	GIB	gib
%token		giball
%token		gibl
%token		gibtop
		-
%token	GT	>
%token	GT2	>>
%token	HORI	hori
%token	HSQ	hsq
%token	HSQH	hsqh
%token	HSQTABLE	-
%token	HSQTABLEH	
%token	IF	if
%token		
		igib
%token		->
%token		::=
%token		in
%token	INCLUDE	include
%token	INMATH	inmath
%token	INSERT	insert
%token		inside
	INTEGER	1110100
	INTERSECT	:coll
	INVERSMAT	
		-1mat
%token		:=
%token		jpg
%token	JSON	json
%token	JSONTABLE	
%token	KEYS	keys
%token	KEYSLIKE	keyslike
	LBRACK	[
%token		{
%token		{{
%token		<=
%token		<=<=
%token	LEFTAT	leftat
%token	LETTERL	zil
%token	LIKE	like
%token	LINREG	linreg
%token		lists
%token		ln
%token		load
%token		log
%token		lower
	LPAREN	(
%token	LT	<

%token LT2 << %token MAD mad streu *1 %token MAL %token MANT mant %token MAX max %token MEDIAN median %token MENT ment %token MENTTABLE %token MIN min %token MINUS -%token MINUSMINUS - -%token MINUSOP1 minus %token MINUSPLUS -+ %token MINUSPROZENT -% %token MIXE %token MOD rest * %token MULT %token MULTKOMPLEX *i %token MULTMAT *mat %token NAME %token NAMEC ..m ..l ..b %token NAMECMINUS ..m- ..l- ..b-%token NATJOIN natjoin %token NATSEL natsel %token NE != %token NE2 !=!= %token FOR for %token FORONR foronr %token NINTEGER %token NO no %token NORM10E norm3e %token NORM10M norm3m %token NORMT normt %token NOT not %token NTH nth %token NTHZAHL nthzahl %token NUMMER num %token NUR nur %token ONEIN 1in %token ONEINMATH 1inmath %token ONR onr %token ONR2 onr2 %token ONRS onrs %token OR L %token PATHNAME %token PERMUTATIONS permutations %token PI pi %token PLUS + %token PLUSPLUSTEXT ++text %token PLUSPLUSTEXT2 ++textsep %token PLUSPROZENT +% %token POLY poly %token POS pos %token POS2 pos-%token PRED pred

%token	PREDTUP	predtup
%token	PREDS	preds
%token	PRED N	nthpred
%token	PRIMO	primo
%token		**
	PROZENT	%
%token		pzahl
		•
	PZAHL1DE	pzahl1de
%token		ram
%token		rat
%token		ratio
	RATIOTYPE	ratio
%token	RBRACK]
%token	RCURL	}
%token	RCURL2	}}
%token	RENAME	rename
%token	REONR	reonr
%token		rgb
%token		rotate
%token		rnd
%token		route
	RPAREN)
%token		•
%token		pos-
		rpos2
%token		sans
%token		satzl
%token		save
%token		seg
%token		;
%token		sepl
%token		si
%token		sin
%token		split
	SPLITSEP	splitsep
%token	SQRT	sqrt
%token	STANDARD	standard
%token	STRICH	~
%token	STRING	
%token	STRING2	
%token	STRING3	
%token	SUBTEXT	subtext
	SUBTEXT2	subtext2
%token		succ
	SUCCTUP	succtup
	SUCC N	nthsucc
%token	_	++
%token		tab
%token		tabh
%token		Cabii
	TABLEH	+
%token		tag
%token		tag0
%token		tagall
%token		tan
%token	IEXI	text

%token TEXTEND	textend		
%token TEXTINDEX	textindex		
%token TIME	time		
%token TOANY	2any		
%token TRANSPOSE	transpose		
%token TREE	tree		
%token TRIM	trim		
%token TUP	tup		
%token TXT	txt		
%token TXTTABLE			
%token ULTIMO	ultimo		
%token UNION	+coll		
%token UNTAG	untag		
%token UNTAG0	untago		
%token UNTAGALL	untagall		
%token UPDATE	update		
	•		
%token UPPER	upper		
%token VARIANCE	variance		
%token VERTI	verti		
%token VLISTS	vlists		
%token WAS	=:		
%token WEG	weg		
%token WEGE	wege		
%token WEGECYC	wegecyc		
%token WHILE	while		
%token WIKI	wiki		
%token WORT	wort		
%token WORTL	cil		
%token WORTM	cim		
%token XML	xml		
%token XMLTABLE			
%token ZAHL	zahl		
%token ZAHL1DE	zahl1de		
%token ZAHLRATIO	zahlratio		
%token ZAHLTRIP	zahltrip		
%left SEMI			
%left AND EQUI IMPLI			
-	MATH LE LIKE LT NE ONEIN ONEINMATH		
%left ABS ADDAGGS ALL APO3 APO4 ARCTAN AVG BARL BE CART COLL COMMA COMP COS			
COUNT COUNTSTROKE CREATE DCOMMA DDDOT DDOT DDOTX			
DELETE DET DIV DIVBIGINT DIVDIV DIVREST EQ2 EX EXCEPT FALLS			
FILLPOLYGON FUNNAME GE2 GIB GIBALL GIBTOP GT2 HORI INSERT INSIDE			
INTERSECT INVERSMAT			
	TS LN LOAD LOG LOWER LT2 MAD MAL MANT MAX MEDIAN MIN		
MINUS MINUSMINUS MIN			
MINUSPLUS MINUSPRO	ZENT MOD MULT MULTKOMPLEX MULTMAT NATJOIN NATSEL NE2		
NORM10E NORM10M NORM	T NOT NTH NTHZAHL		
	TIONS PLUS PLUSPLUSTEXT PLUSPLUSTEXT2 PLUSPROZENT POLY		
PRED_N PRIMO PROD PROZENT PZAHL PZAHL1DE RAT RATIO			
REONR RGB ROTATE ROUND ROUTE SATZL SAVE SIN SPLIT SPLITSEP SQRT STANDARD			
SUBTEXT SUBTEXT2 SUCC_N SUM TAG TAG0 TAGALL TAN			
TEXT			
TEXTEND TEXTINDEX	TOANY TRANSPOSE TREE TRIM ULTIMO UNION UNTAG UNTAG0		

UNTAGALL UNTAGTOPEXCEPTFORMAT UPDATE UPPER VARIANCE

VERTI VLISTS WEGE WEGECYC WORT WORTL WORTM ZAHL ZAHL1DE ZAHLRATIO ZAHLTRIP CUT CUTSPLIT %type <unit> Agg %type <unit> Bars %type <unit> Command %type <unit> Command2 %type <unit> CommandList %type <unit> CommandListCore %type <unit> Expr %type <unit> Expr list %type <unit> FpathName %type <unit> FpathNames %type <unit> Istroke %type <unit> Name2 %type <unit> Names %type <unit> Oper1 %type <unit> Oper2 %type <unit> Oper2_all %type <unit> Oper2_lt %type <unit> Oper2 mal %type <unit> Oper2 name %type <unit> Oper2 names %type <unit> Oper2_or %type <unit> Oper2_plus %type <unit> Oper2 ram %type <unit> Oper2 scheme %type <unit> Oper2 scheme standalone %type <unit> Oper2_textsep %type <unit> Oper2_union %type <unit> Oper3 %type <unit> Oper3 onrs %type <unit> Oper3 scheme %type <unit> Oper3 zufall %type <unit> Operfolge %type <unit> PathName %type <unit> PathNames %type <unit> Ram expr %type <unit> Scheme %type <unit> SchemeIs %type <unit> Sel3 %type <unit> Simpleagg %type <unit> Strich %type <unit> Stroke %type <unit> Tableexpr %type <unit> Tableexpr_c %type <unit> Tableexpr_file %type <unit> Trenner %type <unit> Value %type <unit> Valuelist %type <unit> Where2 %type <unit> main %% main: CommandList EOF

EOF CommandList: CommandListCore Trenner CommandList CommandListCore: Command CommandListCore Trenner Command2 CommandListCore Trenner Command: Command2 | Expr Trenner: EOL | DSEMI Command2: AUS Expr AUS SchemeIs Expr DEFOP DOLLAR NAME FUNNAME EQ Command INCLUDE Expr WAS DOLLAR NAME WAS DOLLAR2 NAME DOLLAR NAME IS Expr DOLLAR2 NAME IS Expr SchemeIs Expr Where2 Operfolge Oper2_all Expr Oper2 name NAME Oper2_names PathNames Oper3_scheme Scheme IS Scheme DDOT Scheme TAG NAME AUSRUFE Scheme Oper3_onrs NAME AUSRUFE Expr Oper2_ram RAM Oper2_scheme_standalone Scheme Oper3 Expr AUSRUFE Expr ADDAGGS NAME AUSRUFE Oper1 SAVE Tableexpr_file Stroke Istroke SchemeIs Expr FOR Expr Where2 SchemeIs Expr FORONR Expr Where2 SchemeIs Expr WHILE Expr AUSRUFE Expr Where2 Sel3 Expr Sel3 PathNames AUSRUFE Expr PathName IMPLIR Expr RENAME PathName AUSRUFE NAME WEG PathNames NUR PathNames Agg Expr

Where2:

AT FpathNames | LEFTAT FpathNames Sel3: AVEC SANS Stroke: GIB Scheme Stroke NAME EQ Scheme Stroke ATOM DIV Scheme Stroke NAME IS Expr AUSRUFE Agg Strokel: GIBL Scheme Strokel NAME EQ Scheme Strokel ATOM DIV Scheme Strokel NAME IS Expr AUSRUFE Agg Istroke: IGIB Scheme Istroke NAME IS Expr AUSRUFE Agg | Istroke NAME AUSRUFE Simpleagg Scheme: Scheme COLL LPAREN Scheme RPAREN Scheme COMMA Scheme %prec PLUS Scheme OR Scheme %prec PLUS Name2 MIXE NAMEC | NAMECMINUS Agg: Simpleagg AVG COUNT VARIANCE MAD MEDIAN LINREG **COUNTSTROKE** Simpleagg: SUM MAX MIN PROD ΕX ALL Names: NAME COMMA Names NAME

SchemeIs: Scheme IS PathName: PATHNAME NAME PathNames: PathName PathNames | PathName FpathName: PATHNAME NAME NAMEC FpathNames: FpathName FpathNames | FpathName Name2: NAME ZAHL PZAHL RATIO TEXT WORT BOOL BAR ONR Ram_expr: WIKI Expr_list: Expr | Expr_list Expr Expr: NAME PATHNAME NAME Strich NAME PREDTUP NAME SUCCTUP NAME SUCC_N Expr NAME PRED_N Expr NAME PRED NAME SUCC Ram_expr Expr Oper2_ram RAM Expr SAVE NAME Expr Oper2_name NAME Expr Oper2 names Names | Expr Oper3_scheme Scheme IS Scheme DDOT Scheme

Expr TAG NAME AUSRUFE LPAREN Scheme RPAREN DOLLAR NAME DOLLAR2 NAME TIME LPAREN Expr RPAREN LBRACK Expr_list RBRACK LBRACK Bars RBRACK LCURL Expr_list RCURL LCURL2 Expr_list RCURL2 LBRACK RBRACK LCURL RCURL LCURL2 RCURL2 LBRACK Valuelist RBRACK LCURL Valuelist RCURL LCURL2 Valuelist RCURL2 LBRACK Names AUSRUFE Expr DDOTWHILE Expr RBRACK LBRACK Names AUSRUFE Expr DDDOTWHILE Expr AUSRUFE Expr RBRACK Expr IF Expr Expr Oper3 Expr AUSRUFE Expr %prec PLUS Expr ADDAGGS NAME AUSRUFE Oper1 %prec PLUS OR MAL Expr Expr Oper2_or Expr %prec AND Expr Oper2_lt Expr %prec LT Expr Oper2 Expr %prec PLUS Expr Oper1 Expr FUNNAME Expr Oper2 scheme Scheme NAME POS PATHNAME POS NAME RPOS PATHNAME RPOS NAME POS2 PATHNAME POS2 NAME RPOS2 PATHNAME RPOS2 NAME TUP PATHNAME TUP NAME SEG PATHNAME SEG NAME ALLSEGS PATHNAME ALLSEGS NAMEC NAMECMINUS BEGIN CommandList END Tableexpr Value | Valuelist Tableexpr: Tableexpr_c | Tableexpr_file Tableexpr_c: TABLE TABLEH

XMLTABLE MENTTABLE JSONTABLE CSVTABLE HSQTABLE HSQTABLEH TXTTABLE RAM Tableexpr_file: ТАВ XML TABH CSV HSQ HSQH TXT MENT JSON FREL QRY | JPG Strich: STRICH | Strich STRICH Bars: OR | Bars OR Value: NINTEGER INTEGER FLOAT ONR2 RATIOTYPE ΡΙ EULER SEPL STRING STRING2 STRING3 SI NO Valuelist: Value Valuelist | Value Value Operfolge: 0per1 | Oper1 Operfolge Oper1:

SUM ALL ΕX MAX MIN COUNT ZAHLTRIP COUNTSTROKE PROD ZAHLRATIO AVG DIVDIV MINUSMINUS VARIANCE MAD MEDIAN LINREG TRANSPOSE PLUSPLUSTEXT TEXT WORT ONR UPPER LOWER TRIM ZAHL SATZL LETTERL WORTL WORTM PZAHL INVERSMAT DET PERMUTATIONS NUMMER ZAHL1DE PZAHL1DE AP03 AP04 NORMT NORM10E NORM10M STANDARD ABS **UNTAG0** TOANY MINUSOP1 ROUTE NATSEL NATJOIN SQRT SIN COS TAN ARCTAN

LN RATIO NOT CREATE PRIMO ULTIMO RGB REONR UNTAGALL BARL Oper2_all: Oper2 | Oper2_lt | Oper2_or Oper2: Oper2_union | Oper2_plus | Oper2_textsep Oper2_mal NTH NTHZAHL RAT MINUS MULTMAT MULTKOMPLEX L Oper2_mal: DDOT MAL PLUSPROZENT PROZENT | MINUSPROZENT Oper2_or: OR AND IMPLI | EQUI Oper2_union: UNION EXCEPT INTERSECT CART KEYS KEYSLIKE ROUND MANT LISTS VLISTS WEGE TREE | ROTATE

POLY TEXTEND TEXTINDEX LOAD SPLIT CUT CUTSPLIT SPLITSEP DCOMMA COMMA	
Oper3: SUBTEXT SUBTEXT2 MINUSPLUS Oper3_zufall INSIDE FALLS WEGECYC	
Oper3_zufall: DDDOT DDOTX	
Oper2_lt: LT GT LE GE NE EQ LT2 GT2 LE2 GE2 EQ2 NE2 IN INMATH ONEIN ONEINMATH LIKE SEMI	
Oper2_plus: PLUS MULT DIV MOD DIVREST DIVBIGINT LOG BE	

Oper2_textsep: PLUSPLUSTEXT2 Oper2 name: TAG0 TAGALL COMP | HORI Oper2_names: UNTAG Oper2_ram: INSERT UPDATE | DELETE Oper2_scheme: Oper2_scheme_standalone | GIB Oper2_scheme_standalone: GIBALL | GIBTOP Oper3 scheme: VERTI Oper3_onrs: ONRS

```
%%
```

22 Appendix C: List of o++o color names

"aliceblue",(0.941176470588,0.972549019608,1.);
"antiquewhite",(0.980392156863,0.921568627451,0.843137254902);
"aquamarine",(0.498039215686,1.,0.83137254902);
"azure",(0.941176470588,1.,1.);
"beige",(0.960784313725,0.960784313725,0.862745098039);
"bisque",(1.,0.894117647059,0.76862745098);
"black",(0.,0.,0.);
"blanchedalmond",(1.,0.921568627451,0.803921568627);
"blue",(0.,0.,1.);
"blueviolet",(0.541176470588,0.16862745098,0.886274509804);
"brown",(0.647058823529,0.164705882353,0.164705882353);
"burlywood",(0.870588235294,0.721568627451,0.529411764706);
"cadetblue",(0.372549019608,0.619607843137,0.627450980392);
"chartreuse",(0.498039215686,1.,0.);

```
"chocolate", (0.823529411765, 0.411764705882, 0.117647058824);
"coral",(1.,0.498039215686,0.313725490196);
"cornflowerblue", (0.392156862745, 0.58431372549, 0.929411764706);
"cornsilk",(1.,0.972549019608,0.862745098039);
"cyan",(0.,1.,1.);
"darkgoldenrod", (0.721568627451, 0.525490196078, 0.043137254902);
"darkgreen",(0.,0.392156862745,0.);
"darkkhaki",(0.741176470588,0.717647058824,0.419607843137);
"darkolivegreen",(0.333333333333,0.419607843137,0.18431372549);
"darkorange",(1.,0.549019607843,0.);
"darkorchid", (0.6, 0.196078431373, 0.8);
"darkred",(0.5450,0.,0.);
"darksalmon", (0.913725490196, 0.588235294118, 0.478431372549);
"darkseagreen", (0.560784313725, 0.737254901961, 0.560784313725);
"darkslateblue", (0.282352941176, 0.239215686275, 0.545098039216);
"darkslategray", (0.18431372549, 0.309803921569, 0.309803921569);
"darkturquoise", (0., 0.807843137255, 0.819607843137);
"darkviole",(0.580392156863,0.,0.827450980392);
"deeppink",(1.,0.078431372549,0.576470588235);
"deepskyblue",(0.,0.749019607843,1.);
"dimgrey",(0.411764705882,0.411764705882,0.411764705882);
"dodgerblue",(0.117647058824,0.564705882353,1.);
"firebrick", (0.698039215686, 0.1333333333333, 0.13333333333);
"floralwhite",(1.,0.980392156863,0.941176470588);
"forestgreen", (0.133333333333, 0.545098039216, 0.133333333333);
"gainsboro", (0.862745098039, 0.862745098039, 0.862745098039);
"ghostwhite",(0.972549019608,0.972549019608,1.);
"gold",(1.,0.843137254902,0.);
"goldenrod", (0.854901960784, 0.647058823529, 0.125490196078);
"green",(0.,1.,0.);
"greenyellow",(0.678431372549,1.,0.18431372549);
"grey",(0.745098039216,0.745098039216,0.745098039216);
"honeydew", (0.941176470588, 1., 0.941176470588);
"hotpink",(1.,0.411764705882,0.705882352941);
"indianred",(0.803921568627,0.360784313725,0.360784313725);
"ivory",(1.,1.,0.941176470588);
"lavender", (0.901960784314, 0.901960784314, 0.980392156863);
"lavenderblush", (1., 0.941176470588, 0.960784313725);
"lawngreen",(0.486274509804,0.988235294118,0.);
"lemonchiffon",(1.,0.980392156863,0.803921568627);
"lightblue",(0.678431372549,0.847058823529,0.901960784314);
"lightcoral", (0.941176470588, 0.501960784314, 0.501960784314);
"lightcyan",(0.878431372549,1.,1.);
"lightgoldenrod",(0.9333333333333,0.8666666666666667,0.509803921569);
"lightgray", (0.827450980392, 0.827450980392, 0.827450980392);
"lightpink",(1.,0.713725490196,0.756862745098);
"lightsalmon", (1., 0.627450980392, 0.478431372549);
"lightseagreen", (0.125490196078, 0.698039215686, 0.6666666666667);
"lightskyblue", (0.529411764706, 0.807843137255, 0.980392156863);
"lightslateblue", (0.517647058824, 0.439215686275, 1.);
"lightslategray", (0.46666666666667, 0.5333333333333, 0.6);
"lightsteelblue", (0.690196078431, 0.76862745098, 0.870588235294);
"lightyellow",(1.,1.,0.878431372549);
```

```
"limegreen",(0.196078431373,0.803921568627,0.196078431373);
"linen",(0.980392156863,0.941176470588,0.901960784314);
"Itgoldenrodyello", (0.980392156863, 0.980392156863, 0.823529411765);
"magenta",(1.,0.,1.);
"maroon",(0.690196078431,0.188235294118,0.376470588235);
"mediumaquamarine", (0.4, 0.803921568627, 0.6666666666667);
"mediumblue",(0.,0.,0.803921568627);
"mediumorchid", (0.729411764706, 0.3333333333333, 0.827450980392);
"mediumpurple", (0.576470588235, 0.439215686275, 0.858823529412);
"mediumseagreen",(0.235294117647,0.701960784314,0.443137254902);
"mediumslateblue", (0.482352941176, 0.407843137255, 0.933333333333);
"mediumturquoise",(0.282352941176,0.819607843137,0.8);
"mediumvioletred", (0.780392156863, 0.0823529411765, 0.521568627451);
"medspringgreen", (0., 0.980392156863, 0.603921568627);
"midnightblue",(0.0980392156863,0.0980392156863,0.439215686275);
"mintcream", (0.960784313725, 1., 0.980392156863);
"mistyrose",(1.,0.894117647059,0.882352941176);
"moccasin",(1.,0.894117647059,0.709803921569);
"navajowhite",(1.,0.870588235294,0.678431372549);
"navyblue",(0.,0.,0.501960784314);
"oldlace",(0.992156862745,0.960784313725,0.901960784314);
"olivedrab", (0.419607843137, 0.556862745098, 0.137254901961);
"orange",(1.,0.647058823529,0.);
"orangered",(1.,0.270588235294,0.);
"orchid",(0.854901960784,0.439215686275,0.839215686275);
"palegoldenrod", (0.933333333333, 0.909803921569, 0.6666666666667);
"palegreen",(0.596078431373,0.98431372549,0.596078431373);
"paleturquoise",(0.686274509804,0.9333333333333,0.93333333333);
"palevioletred", (0.858823529412, 0.439215686275, 0.576470588235);
"papayawhip",(1.,0.937254901961,0.835294117647);
"peachpuff",(1.,0.854901960784,0.725490196078);
"peru",(0.803921568627,0.521568627451,0.247058823529);
"pink",(1.,0.752941176471,0.796078431373);
"plum",(0.866666666666667,0.627450980392,0.86666666666667);
"powderblue",(0.690196078431,0.878431372549,0.901960784314);
"purple",(0.627450980392,0.125490196078,0.941176470588);
"red",(1.,0.,0.);
"rosybrown",(0.737254901961,0.560784313725,0.560784313725);
"royalblue", (0.254901960784, 0.411764705882, 0.882352941176);
"saddlebrown", (0.545098039216, 0.270588235294, 0.0745098039216);
"salmon",(0.980392156863,0.501960784314,0.447058823529);
"sandybrown", (0.956862745098, 0.643137254902, 0.376470588235);
"seagreen",(0.180392156863,0.545098039216,0.341176470588);
"seashell", (1., 0.960784313725, 0.9333333333333);
"sienna",(0.627450980392,0.321568627451,0.176470588235);
"silver",(0.898039215686, 0.898039215686, 0.898039215686);
"skyblue",(0.529411764706,0.807843137255,0.921568627451);
"slateblue",(0.41568627451,0.352941176471,0.803921568627);
"slategrey", (0.439215686275, 0.501960784314, 0.564705882353);
"snow",(1.,0.980392156863,0.980392156863);
"springgreen", (0., 1., 0.498039215686);
"steelblue",(0.274509803922,0.509803921569,0.705882352941);
"tan",(0.823529411765,0.705882352941,0.549019607843);
```

"thistle",(0.847058823529,0.749019607843,0.847058823529); "tomato",(1.,0.388235294118,0.278431372549);

"turquoise",(0.250980392157,0.878431372549,0.81568627451); "violet",(0.933333333333,0.509803921569,0.9333333333333);

"violetred",(0.81568627451,0.125490196078,0.564705882353);

"wheat",(0.960784313725,0.870588235294,0.701960784314); "white",(1.,1.,1.);

"whitesmoke",(0.960784313725,0.960784313725,0.960784313725); "yellow",(1.,1.,0.);

"yellowgreen", (0.603921568627, 0.803921568627, 0.196078431373)